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ABSTRACT 

A numerical model has been developed for three-dimensional transient 

conduction based temperature calculations in underwater wet welding on a thick 

rectangular plate. The numerical scheme is based on a fully implicit finite volume 

method. A variable mesh size centered around the moving heat source, and temperature 

dependent thermal properties have been used in the calculations. Convective, radiative 

and boiling surface thermal conditions have also been included. The weld pool region 

itself has been modeled as a solid region of thermal conductivity higher than the 

surrounding unmelted solid region. The validity of the results was checked by comparison 

with Rosenthal's three-dimensional solution for a moving point heat source, and other 

results in the literature. 

v 



VI 



TABLE OF CONTENTS 

I.        INTRODUCTION 1 

E.       BACKGROUND 3 

A. PREVIOUS STUDIES 3 

B. FINITE VOLUME METHOD 7 

m.      MODEL DEVELOPMENT 13 

A. DEFINING THE WORKPIECE  .13 

B. BOUNDARY CONDITIONS 14 

1. Top Face 14 

2. Other Faces 15 

3. Simulating The Arc 16 

4. Boiling Heat Transfer 16 

a. Free Convection Regime 17 

b. Nucleate Boiling Regime 18 

c. Transition Boiling Regime 19 

d. Film Boiling Regime 20 

C. COEFFICIENTS USED IN THE EQUATIONS 22 

D. DERIVATION OF THE EQUATIONS 23 

IV. RESULTS AND DISCUSSION... 45 

V. CONCLUSIONS AND RECOMMENDATIONS 61 

APPENDLX A: PROGRAM STRUCTURE 63 

vii 



APPENDIX B: PROGRAM CODES 71 

LIST OF REFERENCES 107 

INITIAL DISTRIBUTION LIST Ill 

vm 



LIST OF SYMBOLS 

SYMBOL DESCRIPTION UNITS 

cp specific heat J/kg K 
Cs/ emprical constant 
d exponential factor 
g gravitational acceleration m/s2 

h convective heat transfer coefficient; W/m2K 
h combined heat transfer coefficient W/m2 K 

h c local heat transfer coeff. convection conductance W/m2 K 

h r average heat transfer coeff. for radiation W/m2 K 
hfg latent heat of vaporization J/kg 
k thermal conductivity W/m K 
L characteristic length m 
q heat flux W/m2 

q0 volumetric heat energy generation rate W/m3 

Q heat input to the workpiece W 
r0 radius of the heat input distribution m 
R radial distance from the origin m 
t time s 
T temperature K or C 
U welding speed m/s 
V volume m3 

a thermal diffusivity m2/s 
ß volumetric thermal expansion coefficient K"1 

S distance between two neighboring grid points m 
A difference between values 
s surface emissivity 
0 finite volume method coefficient 
// absolute viccosity Ns/m2 

v kinematic viscosity m2/s 
p density kg/m3 

<r Stefan-Boltzman constant W/m2 K4 

ex surface tension N/m 

IX 





ACKNOWLEDGEMENTS 

The author would like to gratefully acknowledge the support of NAVSEA for 

this project. 

The author would like especially to express his appreciation to Prof.Ashok 

Gopinath for his expert assistance and creative influence throughout the course of this 

research. The author also wishes to thank his colleague, Ltjg.Ibrahim Girgin for various 

forms of assistance and computational support. 

Finally, the author would like to express his sincere gratitude to his wife Gonul 

and his family for their patience, understanding and encouragement during the 

preparation of this thesis research. 

XI 



xn 



I.     INTRODUCTION 

To improve the quality of the underwater welding and to accomplish a reliable, 

permanent underwater wet welding capability has a great importance in today's industrial 

and military facilities. With the development of underwater wet welding techniques, the 

time and the money required for permanent and temporary repairs of ships and other 

underwater structures can be minimized. Today, the use of hyperbaric welding process 

obtains a limited quality of welding especially for the construction and repairs of 

underwater pipelines. In this process a large pressure chamber is used to keep the water 

away from the workpiece. But, operating this kind of chamber is very expensive and due 

to the limited geometric size, only a few joint configurations can be enclosed in a 

chamber [Ref.l]. The other welding techniques such as double shielding and flux 

shielding also use the water removing theory from the arc area during welding. But, the 

working area must be completely prevented from water for satisfactory welding results 

[Ref. 2]. 

Currently, underwater wet welding is used for the temporary repair needs. 

Because of their poor quality compared to surface (air) welds (they obtain 80% of the 

tensile strength and 50% ductility of the surface welds [Ref. 3].), they must be replaced as 

soon as possible. Therefore, the development of a more efficient wet welding technique is 

the only solution to this problem. 

The surrounding water environment during wet welding causes rapid cooling and 

steep temperature gradients in the weld area behind the arc [Ref.4]. Because of the 
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extremely complex nature of the heat transfer phenomena between heated surface and the 

water environment, a numerical model simulation is necessary. 

In the present study, a numerical model has been developed for transient, three- 

dimensional conduction heat transfer in underwater welding process on a thick 

rectangular plate. The numerical scheme was based on fully implicit finite volume model, 

including convection, radiation and boiling surface thermal boundary conditions. The 

different regimes of boiling were accounted for on the surface. A variable mesh size 

centered around an arc source moving at constant speed was used to determine 

temperature variations inside and around the weld pool. The weld pool region itself has 

been modeled as a solid region of thermal conductivity higher than the surrounding 

unmelted solid region. The input data from the previous studies based on different 

methods were used to check the accuracy and the validity of the numerical method. 



II.  BACKGROUND 

A.    PREVIOUS STUDIES 

Rosenthal did the most important early work on the theory of the effect of moving 

sources of heat in the late of 1930s. He studied the fundamentals of this theory and 

derived equations for two-dimensional and three-dimensional heat conduction in a solid 

when a moving source is in use [Ref. 5,6]. The analytical solution derived by Rosenthal 

was based on the principle of a quasi-stationary thermal state. The quasi-stationary 

thermal state represents a steady thermal response of the weldment with respect to the 

moving coordinates. In other words, the origin moves with the heat source, and for an 

observer at origin, the temperature distribution and the pool geometry do not change with 

time [Ref. 6,7]. Rosenthal's solution for three-dimensional heat flow during welding is 

as follows [Ref. 6]: 

2x(T-T0)ksR 
—i  =exp 

Q 

f   U(R-x)^ 
2a, 

(2.1) 

where 

R = radial distance from origin [x2 + v2 + z2) 
T = temperature, 
TQ = workpiece temperature before welding, 
ks = thermal conductivity of solid, 
Q = heat input to the workpiece, 

,1/2 



U = welding speed, 
x  = the distance that the heat source traveled, 
as = thermal diffusivity of solid (i.e., ks I pC5, where p and Cs are density and 

specific heat of solid, respectively). 

The assumptions used by Rosenthal to derive the equation above are as follows 

[Ref. 7]: 

1. Point heat source. 
2. No melting and negligible heat of fusion. 
3. Constant thermal properties. 
4. No heat loss from the workpiece surface. 
5. Infinitely wide workpiece. 

Although Rosenthal's assumptions help to simplify the mathematical analysis 

involved, there are some significant deviations between theoretical and experimental 

results. For instance, as a result of the point heat source assumption, the temperature at 

the weld centerline goes to infinity even though the power of the heat source is finite. 

Also, the values of thermal properties change with the temperature and neglecting the 

heat fusion gives considerable errors. [Ref. 7] 

Tanaka did the first studies on the application of the mathematical analysis of 

non-stationary heat flow to the practical problems. Naka and Masubuchi studied the 

mathematical analysis of non-stationary heat flow. They used dimensional expressions to 

make the numerical calculations simple. Nippes and Savage studied the cooling rates of 

heat affected zones by using a graphical approach method. Suzuki found an analytical- 

empirical method of studying the effects of welding parameters and determined the 

cooling rate from welding conditions with the help of a monograph. [Ref.6] 



Adams derived new equations from Rosenthal's equation by using the fusion line 

as a boundary condition and calculated the peak temperature at a distance from the fusion 

boundary at the weldment surface [Ref. 7]. His equation for three-dimensional heat flow 

is as follows: 

1 5A4ftksas 

Tp-T0 QU 
2 + 

2asJ 
+ Tm-T0 

(22) 

where all the terms are defined in equation (2.1) except 

T   = peak temperature at a distance Y from the fusion boundary, 

Tm = melting temperature, 

Christensen also used analytical-empirical approach and derived dimensionless 

equations based on Rosenthal's three-dimensional equation. He explained the relation- 

ships between the welding conditions and the weld bead geometry. [Ref. 7] 

Recently, numerical analysis methods and computer programs have been 

commonly used to develop the previous assumptions. In 1965, The Battelle Institute 

Geneva Laboratory in Switzerland conducted a computer-aided study about analyzing of 

heat flow in weldments [Ref. 6]. The University of Wisconsin and McDonnell Douglas 

Aircraft Company also conducted similar studies in the same year [Ref. 6]. In 1970, 

M.I.T. researchers studied heat flow during underwater welding. They also developed 

finite element programs on heat flow during welding [Ref. 6]. Oreper and Szekeley 

examined stationary, axisymmetric TIG (tungsten-inert-gas) welding process with a 



moving boundary by using finite difference method. Their formulation contained the 

affects of transient conduction, electromagnetic, buoyancy and surface tension forces 

[Ref. 8]. Kou and Wang performed computational studies of the GTA welding process. 

They presented a computer simulation of three-dimensional convection for an arc source 

moving at constant speed. They considered electromagnetic, buoyancy and surface 

tension forces on the pool surface. They found very good agreement between the 

calculated and observed fusion boundaries [Ref. 9]. They also studied the computer 

simulation of three-dimensional convection in laser melting by considering the buoyancy 

force and the surface tension gradient at the weld pool surface [Ref. 10]. Correa and 

Sundell studied axisymmetric stationary arc source by using different grid sizes for 

computation of flow and electromagnetic fields [Ref. 11]. Saedi and Unkel developed a 

thermal-fluid model of the weld pool. Their model was based on the stationary arc. To 

describe the weld pool geometry, they matched the convective and the conductive heat 

fluxes at the weld boundary by using an iterative calculation method [Ref. 12]. Zacharia 

et al. made three-dimensional calculations on the effects of the heat source in the 

stationary GTAW process. He indicated that a depressed area formed at the weld pool 

center because of an outward fluid flow caused by surface tension force [Ref. 13]. Kim 

and Na developed a model on heat and mass flow for stationary, GTAW process with 

electromagnetic, buoyancy and surface tension forces. They used numerical mapping 

method for calculations [Ref. 14]. Ramanan and Korpela compared the effects of thermo- 

capillary and Lorentz forces on the flow pattern in a stationary weld pool with buoyancy 

forces. They used multi-grid methods and a local grid refinement technique with 



axisymmetric stationary arc source [Ref. 14]. Ule, Joshi and Sedy determined three- 

dimensional transient temperature variations in the GTAW process by using the explicit 

finite difference method. They used different mesh sizes and temperature dependent 

thermal properties. They also considered convective and radiative surface thermal 

conditions during calculations [Ref. 16]. Kanouff and Greif studied the unsteady 

development of an axisymmetric arc weld pool in GTAW process. They used moving 

grids to follow the phase change boundary and considered the effects of Marangoni, 

Lorentz and buoyancy forces in the calculations [Ref. 17]. Joshi, Dutta, Schupp and 

Espinosa developed a three-dimensional numerical model to describe the flow circulation 

phenomena in aluminum weld pools under non-axisymmetric Lorentz force field [Ref. 

18,19]. 

B.    FINITE VOLUME METHOD 

The finite volume method is one of the simple and well-established 

Computational Fluid Dynamics (CFD) techniques that were originally developed as a 

special finite difference method [Ref. 19]. The stages of the numerical algorithm in this 

method are as follows [Ref. 19]: 

1. Formal integration of the governing equations of fluid flow over all the finite 
control volumes of the solution domain. 

2. Discretisation involves the substitution of a variety of finite difference type 
approximations for the terms in the integrated equation representing flow 
process such as convection, diffusion and sources. This converts the integral 
equations into a system of algebraic equations. 

3. Solution of the algebraic equations by an iterative method. 



In the control volume integration, the calculation domain is divided into discrete 

control volumes. There is only one control volume surrounding each grid point and the 

boundaries of the control volumes are positioned side to side in the middle of the distance 

between the grid points. Integrating the governing differential equation over each control 

volume derives the resulting discretised equations. The discretised equations express the 

conservation of quantities such as mass, momentum and energy for each control volume. 

This characteristic exists for any number of grid points. The numerical solution insures 

the validity of the conservation principle over the whole calculation domain for the 

related quantities. Versteeg and Malalasekera [Ref. 20] wrote " This clear relationship 

between the numerical algorithm and the underlying physical conservation principle 

forms makes finite volume method much simpler to understand by engineers than finite 

element and spectral methods". To understand the finite volume method better an 

illustrative example can be given for one-dimensional steady state heat conduction 

situation. [Ref. 20,21,22] 

1. One dimensional steady state heat conduction 

The governing equation for one-dimensional steady state heat conduction is 

dx 
k— 

V   dx) 
+ S = 0 (2.3) 

where 

k = thermal conductivity, 
T = temperature, 
iS = the rate of heat generation per unit volume. 



The domain is divided into small and nonoverlapping control volumes. A part of 

one-dimensional grids generated is shown in Figure 2.1. Here, The grid point under 

construction is denoted as P and the neighboring nodes to the east and west are denoted as 

E and W respectively. The lower case letters e and w denotes the east and west faces of 

the control volume. The distance between the nodes W and P is denoted by Sx^ and 

between P and E is denoted by öxPE. The distances between w and P and between P and e 

are given by äcwP and &cPe respectively. The control volume width is shown as 

Ax = &c,„a 

W 

-*- 

E 

SxwP &cPe 

& twp & CPE 

Figure 2.1      One-dimensional grid [Ref. 20] 

Integrating equation (2.3) over the control volume gives, 

f     JT\        f     dT\ dT 
k 

dx 
+ 

W VI 

jSdx = 0 (2.4) 



By assuming a piecewise-linear profile assumption (Figure 2.2), equation (2.4) 

can be evaluated as 

(T   —T~\ lE       1P 

Sx \    a*PE     J 
-K 

( T       T   ~\ 1P      1w 

Sx 
+ SAx = 0 (2.5) 

where S is the average value of S over the control volume. 

T 

L 

T v   ^_^_ 

7 r 1 r 

1 kV       w        I 5         e       E X 

Figure 2.2      Piecewise -linear Profile [Ref. 22] 

By arranging the terms, the final discretised equation can be written as 

aPTp =aETE +awTw +b (2.6) 

where 

aE = Sx PE 

(2.7a) 
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aw = 
Sx, WP 

ap =aE+ aw 

b = SAx 

(2.7b) 

(2.7c) 

(2.7d) 

11 



12 



IE.   MODEL DEVELOPMENT 

A.       DEFINING THE WORKPIECE 

The workpiece has been defined as a thick rectangular plate (Figure 3.1). 

 5 9 
1 

H^/ 

3 4 

S 
2 

6 

Figure 3.1 The workpiece 

where 

1. Right Lateral Face (East) 
2. Left Lateral Face (West) 
3. Back Face (North) 
4. Front Face (South) 
5. Top Face (Top) 
6. Bottom Face (Bottom) 

Convective heat transfer coefficients for each face have been defined as follows: 

Right-Lateral Face: he 

Left-Lateral Face : hw 

Back Face : hn 

Front Face : hs 

Top Face : ht 

Bottom Face : hb 

The same method has been also used to define thermal conductivity and heat flux terms 

for each face. 
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B.        BOUNDARY CONDITIONS 

1. Top Face 

By adding radiative and convective heat loss from the top face, boundary 

condition equation can be defined as 

~k% = h{Twa" -rj + ^"+^fc -r-) f3'1) 

In equation (3.1), for the radiation term, Tmr can be neglected. \T*aU » T*ur). The 

distance between the node point P and the face can be taken as Ax/2, where the distance 

between the node point P and the neighboring nodes is Ax . Again, for the radiation term, 

because of the small distance between the node point P and the face, by assuming 

Ty>all  = TP » We haVe 

_k(Twal, -T ) = _rj + q„+ a£T< {32) 

Ax/2 

Equation (3.2) can be opened as 

Ik Ik 
~—Twal, +—TP = hTwea-hTm+q"+<xT; (3.3) 

Ax Ax 

Equation (3.3) can be arranged as 

14 



/<->/,        \ 
■ wall 

2k_ 

vAx      j 
+ h 

lie 
= —TP+hTx-q"+asTP

4 

Ax 
(3.4) 

Equation can be written as 

T     = 1wall 

2A 

Ax 
TP+hTa>-q"+(7€TP" 

2k_ 

Ax 
+ h 

(3.5) 

The unknown temperature for the top face points is found as 

■*wall  ~ 

2kTP + hAxTa -q"Ax- crsAxT* 

2k + hAx 
(3-6) 

where 

„n     „it 
(z   top      tf source    " l '9 boiling (3.7) 

<l"sou™ = dxc source heat flux, 
q"t      = a constant arbitrary heat flux which may be applied to the top face, 

<fboiung = boiling heat flux, 

2.        Other Faces 

By using the same method from the top face (without radiation), 

15 



_2kTP+hAxTcc-q"Ax 
Kall~      li^Mx (3-8) 

3.        Simulating the Arc 

To simulate the heat input from the arc to the workpiece, it is assumed that the 

heat input distribution of the arc have a Gaussian distribution on the top face of the 

workpiece. The general equation is 

Q = q0je '•   2mdr (3.9) 

where 

Q = the total heat input into the workpiece, 
q0 = the volumetric energy generation rate, 

r0 - the radius of the heat input distribution, 

d = the exponential factor, 

By solving equation (3.9), the volumetric energy generation rate can be found as 

q0=^ (3.10) 
m-0 

4. Boiling Heat Transfer 

Modes or regimes of boiling and the related equations can be classified as follows 

(where ATe =TS-Tsal): 

16 



a. Free Convection Regime (ATe < 5 °C) 

In this regime, natural convection effects determine the heat transfer 

between the heating surface and surrounding liquid. Recommended correlations for upper 

surface of heated plate are [Ref. 25] 

NÜL = 0.5ARaxl"        [itf <RaL<W) (3.11) 

NUL = 0.15Jta}/3        (lO7 <RaL <10n) (3.12) 

where the Rayleigh number, 

Rai = gß(T,-T.)ü (313) 

va 

here 

g = gravitational acceleration, m/s 

and 

ß = volumetric thermal expansion coefficient, K"1 

v = kinematic viscosity, m /s 
a = thermal diffusivity, m /s 
L = characteristic length, L = Plate surface area (As)l Perimeter (P) 

h = *^ (3.14) 

and the value of heat flux is, 
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g"=h(Ts-TJ (3.15) 

b.        Nucleate Boiling Regime (5 °C < ATC < 30 °C) 

The most useful nucleate pool boiling correlating equation was developed 

by Rohsenow [Ref. 23, 24, 25,], 

q"=Mihfs 
g(Pi-pv) 

1/2 / cnATe pj e 

(3.16) 
AAPr". 

where the subscripts s, 1, and v express surface, saturated liquid state and vapor state. The 

definition of each term in equation (3.16) are as follows: 

///   = viscosity of the liquid, kg/ms 

hfg  = latent heat of vaporization, J/kg 

g    = gravitational acceleration, m/s2 

P*   = density of the saturated liquid, kg/m3 

P*   = density of the saturated vapor, kg/m3 

a    = surface tension of the liquid-to-vapor interface, N/m 
cpl = specific heat of saturated liquid, J/kgK 

*Te = Ts-Tsa, 

Pr,  = Prandtl number of the saturated liquid 

n     = 1.0 for water, 1.7 for other fluids 
Csf = empirical constant that depends on the nature of the heating 

surface fluid combination and whose numerical value varies 
from system to system 

But, in underwater welding, the surrounding water temperature is below the 

saturation temperature (between 0°C and 30 °C). This is called as the heat transfer to a 

subcooled liquid. For the subcooled boiling, the heat flux can be estimated as [Ref. 23] 

18 



q"=qs"i i + ^l\^sat      * liquid) 24 
nhf.pv 

Pv 

og(p,-pv) 

1/4 

where 

*/ 
a, 

■■ thermal conductivity of the liquid, W/m.K 
: thermal diffusivity of the liquid (k I pcp), m

2/s and, 

(3.17) 

3 g(Pl-Pv) 

1/2 

PV 

Og(Pl-Pv) 

1/4 

(3.18) 

c.        Transition Boiling Regime (30 °C < ATe < 120 °C) 

For the transition-boiling regime, no sufficient theory has been derived. 

This regime is between the maximum and minimum heat fluxes where [Ref. 23,25], 

q"mxi = 0.U9hfgPv 
°g(Pl-Pv) 

1/4 

(3.19) 

9"Bän = 0.09pvhJjs 
gv(Pi-pv) 

(PI+PVY 

1/4 

(3.20) 

By assuming a linear heat flux distribution in the transition boiling regime 

(Figure 3.2), it can be written, 

logfa"- ) ~ logto"^ ) __ logfa") - logta"^ ) 
Iog30-logl20 logAre-logl20 

(3.21) 
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by arranging equation (3.21), 

log ^   max 

logfo") 
"  min ) 

log 

( AT ~] 

30 

V120y 

(3.22) 

and the heat flux at a point in transition boiling regime can be found as 

»_ inlos(?") q"=\0 (3.23) 

logo",) 

4 
"  max 

> 

4 

\ 
H   min 

30      A7;      120               log(A7;) 

Figure 3.2 Linear Distribution of Heat Flux in Transition Regime 

d.        Film Boiling Regime (A7; > 120°C) 

In film boiling regime for flat horizontal surfaces, Westwater and Breen 

recommended the following correlation for conduction heat transfer coefficient [Ref.23], 

20 



he = 0.59- 
'g(p, -PJ)PX%S +0.68^ATJ 

A//vA7e 

1/4 

(3.24) 

where 

^v   = viscosity of the vapor, kg/ms 
v   = thermal conductivity of vapor, W/mK 

cv = specific heat of saturated vapor, J/kgKand, 

X-2n 
g(Pl-Pv). 

1/2 

(3.25) 

Bromley suggested combining conduction and radiation heat transfer coefficients 

[Ref. 23], 

htotal =hc+ 0.75 hr 

where 

hr =<JS, 

' rjiA     rp4    ^ 
* s        * sat 

T  -T \xs      x sat J 

here 

ss = surface emissivity 

Ts = absolute surface temperature 

and the resulting heat flux in this regime is found as 

q"= htotai ATe 

(3:26) 

(3.27) 

(3.28) 
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C.       COEFFICIENTS USED IN THE EQUATIONS 

The coefficients used deriving the discretised equations are as follows: 

KA kA kA 
n    —     e    e                                               n     —     w    w 

E ~~  Ä, aw  ~ "^  UN SxpE öxjyp öy PN 

kA. „ -k<A> „ _M* as=tr °T=ir a*--^r- tysp ten ozBp 

a0p  = PC~Äf ÜP  = 6^£ + °W + °N +aS+aT+ ÜB)+ "I 

he&cPE KäXwp 
coeffe- — coeffw=       M   m 

2ke + hedxPE 2kw + h^&Cwp 

KfypN _«._      h,&sp coeffn = "-^  coeffs 
IK+KfypN 2ks+hsSy^ s   '  "susSP 

coeffi=     h'&" coeßb-     A'&" 
1kt + htdzpj 2kb + hbdzBP 

fluxcoeffe = —  flvxcoeffw - ^ 
2ke+heSxPE 2kw+hwäcwp 
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fliacoeffn = fypN 

2kn+hnöyPN 
fluxcoeffs = fysp 

2ks+hsSysp 

fluxcoefft = 
dz PT 

2k, + ht&PT 
fluxcoeffb ■■ 

dz BP 

2kb+hbSzBP 

radcoeff = PT 

2kt +htSzPT 

D.       DERIVATION OF THE EQUATIONS 

The problem is governed by the equation 

8T     d 
pc— = — 

dt     dx 
f, dT}     d k— + — 

r
7 8T^ 
k— 

v fyJ dz 

r
78T^ 
k— 

V   dz j 
(3.29) 

1.        Interior Nodes 
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Figure 3.3 Interior Nodes 
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Integration of equation (3.29) over the control volume and over a time interval from t to 

t + At gives 

1+&1 dT „.,   ,+i rd(,&T}„„    '+? cdf,dT^ 
JJ^*=J£*£**+J£* l   cv , cvdx\   dx) f c

J
vdy{   dy 

dVdt 

f c{dz{  dz) (3.30) 

This may be written as 

\pc—dVdt-        —\k— Adxdt+ —\k— 
l    CV t   cv dx\   dx 

Adydt 

t+At 

+ J }±U°" 
l    CV dz\    dz 

Adzdt (3.31) 

where A is the face area of the control volume and dx, dy, dz are the dimensions   of the 

control volume. Equation (3.31) may be written as 

t+At n en 

t+At 

dT , 
pc—dt 
^ dt 

t+At 

dV: kA 
dT 

dx 
Vr 
V dx 

t+At 

dt+ | kA 
df] 
dy 

\ 

Jn 

dt 

M 
dz 

'kA*? 
\ dz Jb 

dt (3.32) 
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By assuming the grid point value of the temperature at a node to prevail over the whole 

control volume, the left hand side of equation (3.32) can be written as 

J 
cv 

t+At 

j pc^dt^lV = pc(TP-T°)AV (3.33) 

where Tp° refers to temperatures at time t and Tp refers to temperatures at time t + At. 

By applying central differencing to the diffusion terms on the right hand side equation 

(3.32) can be written as 

P(TP-I°)AV= J K4?B Tp 
5c, "PE   J 

KAw 
T -T t+dt 

Jt+j u% Tp 
fy} PN  J 

T -T 

&i SP   J 

it 

r+Ä 

+ KA T   p 

&> ■PT  J 

T -T 

&, •BP   J 

it (3.34) 

The values of TP,TE,TW,TN,TS,TT and TB vary with time. The time integral can be 

calculated by using temperatures at time t or at time t + At or, a combination of 

temperatures at time t and t + At. This approach may be generalized by defining a 

weighting parameter 0 between 0 and 1. 

t+Al 

iT= \Tpdt = [eTp+(i-®)r°l\t (3.35) 
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In equation (3.35) for 0 =0 the temperature at time level t is used (Explicit scheme); for 

0=0.5 the temperatures at t and t + Ataxe equally weighted (Crank-Nicholson scheme); 

for 0=1 the temperature at time level t + At is used (Fully implicit scheme). By using 

equation (3.35) and dividing Ar throughout, equation (3.34) may be arranged as 

pc- fc-tf) 
At 

AV=S *A^-KA 
(I^M+KA,^fM-kA<^M 

Sx PE Sx, WP &. PN Sy. SP 

+ k,A. 
(TT-TP) 

Sz 
-KA.V'-™ vb^b 

PT 

0      rrO 

Sz BP 

0      rrO 

+ (1-0) kA {Tz~T*] 

Sx PE 

,k^2lfSi+kmAmVL3l-k,ZLni 
Sx WP %>PN &. SP 

+ kA^Tr-Tp)   ki (T?-T°) 
KtAi       Ö KbAb       7.  

PT Sz BP 
(3.36) 

Equation (3.36) may be re-arranged as 

&■ 

AV i efu . kA> ikA ikA i kA , M 
At äcPE    ö^p    fyPN    fysp    &pT    &t BP J 

7L M [QTE 

+(i_0)^]+M:[err+(i-0K]+M 
cKfyp cyPN 

PE 

KA QTN+(^-®Kh^[®Ts+(l-®^} 

+M[0rr+(1_0)7?]+M[07;+(1_0K 
& PT & 

+ 
BP 

§>SP 

AV ( 
pc (1-0) 

At A 
*A+KA 
CKpE      OC^p 

K^Ji.^       K./L.       K. A.       KL Ak ■      n    n    .      5    s    .      t    t    .      o    b 

8yPN     SySP     Sz PT        SZBp j 
T (3.37) 
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By putting the defined coefficients from the previous section, equation (3.37) may be 

written as 

[a°P + ®(aE+aw +aN+as +aT + aB )]rp = aE [®TE + (\-®)T°] 

+ aw[®Tw+(l-®)T°]+aN{eTN+{l-e)r°]+as[®Ts+(\-®)rs
0} 

+ aT [®TT + (l - ®)r° ] + aB [®TB + (l - ®)T° ] 
+ [a°P -(\-®)(aE +aw +aN+as+aT + aB)]TP (3.38) 

Finally, by grouping the known and the unknown terms at each side, the discretised 

equation is found as 

apTp -®aETE -®awTw -®aNTN -®asTs -®aTTT -®aBTB = (1-0) 

[aET»E +awT» +aNT° +rf +«Ä° +aBT°]+[al ~(1-©)(** +aw 
+ aN+as + aT+aB)]TP (3.39) 

2.        Left-Front-Top Corner 
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By using the same method from equations (3.30-3.33), equation (3.29) can be written as 

/+A/      / rp rp jf.   .TT-T. 
PE   J & KA- 

TP-TW 

V Sc, WP ) 

t+N 

it+j KA 
T -T lN     XP 

§>PK   J 

+ M,^-* & 

f rp        rp     \ 

k„A h    h 

PT 

vA^i & BP     J 

dt 

WSP J 

(3.40) 

* 

In equation (3.40), Tw and Ts take the value of equation (3.8) and Tr takes the value of 

equation (3.6). By using these values and equation (3.35), we have 

pc (
T

P   
Tr\v = e 

At o        VE     
1
P)        c. 

CKpE OXjyp 

2kjrp+hwäcWPTai -q
n
w&.l WP 

2K+K&WP 

+M.(7;_7>)_ 
fypN fySP 

2ksAs(rr     2ksTP+hsöySPTx-g"söy, rp     _ —'S^P     '    "$ VTSP* 
1P 

s "SSP 

2K+hsfy. SP 

+ 
2k,A, 

Sz PT 

2k,Tp +htdzPTT„ -g"    &PT -as&PTT} 

+ (1-0) 
k.A 

Sx 

2k, + h,& 

?k A (rE-rP)-^^ 

-TD 
PT 

KA b^b 

ÖZ 
(TP-TB) 

BP 

E ~lP 
PE ÖX WP 

T   _ 
lP 

2kJP+hwSxm,Tx-q"w&i 

2K + K&wp 

, k„An     0 _T0x_fMi 
+     r. \2N 1P ) P 

VPN WS? 

,„   2k5T«P+hsdySPT„-q"söy, SP 

2ks+h5Sy, S^VSP 

+ 
2k,A, 

8z PT 

2ktTP +h,&PTTx -g"top&PT -GS&PTT} 

2kt +htözPT 

lP 

J 

ozBP 

(3.41) 

Equation (3.41) may be arranged as 
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AV 
pc—+0-^- + 

+ 

At 

2k,A, 

keAe    2kwAw 

& PT y    2k, + ht&PT i 

2k I w 

V    2kw 
+
K®

C
WPJ 

| *„4 | 7kA L        2ks 

fypN     fysp I    2ks+hsfy, SPJ 

KA 
' & BP 

L D —' 
3c 

[GTE +(l-®)T°E]+^[®TN +(l-0)7^] 
PE & 

+ ̂ k+d-0)i:]- 
& BP 

AV 
pc— -Q-&i-S-± + 
^ At '  ' 

KA   , 2*w4 
QkpE CKfl/p 

PN 

Ik I w 

v    2kw +K®
C
WPJ 

+ KA 
fypN 

+- 
2k A 

* SP 

1 — 
2k 

2ks+hsSySP 

\2*,V 
& PT 

1 — 
2k, 

v 2k, +h,&PT j 
+ KA 

& BP 

rpQ 
lP 

+ 0 
2kwAwfhwäcwpTx-q"wäcl 

äc. 

2ktA, 

wp 

2k +h äc„n,      i 
+ - 

2kA 

Sy. 

& PT 

h,&PTTa -g",op &PT -as&PTTf 

2k, +h,dzPT 

SP 

4\ 

hsfyspT«-<l"söySP 

2ks+hsSySP     j 

+ (1-0) 2«w^W 

<Sc, WP 2kw + nvlax.wp     j 

2kA, (h.frJT„ -q\ dv,P\ 2*1,4 (K&rJ* ~4\op&PT-ae&PTT* 

* SP V 2ks+hsfy isyysp     j & PT V 2k, +h,& PT 

(3-42) 

Equation (3.42) may be re-arranged as 

pc—+0 -J-L + 
At 

+ 

KA , 2v4 

2k,A, (     h,&i 

@*P£ Ofcyff 

"w"%7> 

\2kv/+hJkWP j 
. "-«4 , 2*;4 

#w      ^: 

^ 5P 

'äV    ^SP v^+^^s?y 

+ 

rtAjic*pj> 

^[eTB+(i-®)it]+ 

KA 
'BP. 

TP =M[0r£+(i-0)^]+|4L[©7;+(i-0)^] 
&, PE dyL PN 

BP 

AV 
pc-—(1-0) 
^ At 

KA ! 2ftw4 AA WP 

2£„,+/u&» 'P£ '-"'WP   \^n-w^'lw'MWPj 

j      ^»4       j      2fty4 

4W #SP 

^ ^s/» 

V2^+//5^s/,y 
+ 

2*4 
&, ,pr 

h,&PT 

2k, + h,&PT 

KA 
BP. 

7?+0 2kwA 

WP 

K&wpT«, <fw&i WP 

2kw + K&wp    2K + K&WP )    fysp 
+ 2*,4 4M Q"S%>sp \}KA 

2ks+hsSySP    2ks+hsSy, SPJ & PT 
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h,özPTTx €top &PT OE&pjTp 

v 2k, + h, &PT    2k, +ht&PT    2k, + h, dzPT j 

q\ axt wp 2ksAs hsfySpT* 

+ (1-0) 

l"s %>SP 

2M* 
&c WP 2kw+hw&lvP 

2kw+hw&WP)    oySP [2ks+hsSySP    2ks+hsSy 

<l"top &PT 

2k, + h,dz 

+ 2*,4 
SP ) & PT K2k, +hl&PT 

PT 

<JS5ZPTTP 

2k, +h,SzPT j 
(3.43) 

By putting the defined coefficients from the previous section, equation (3.43) may be 

arranged as 

[a°P + ®[aE + 2aw (coeffw) + aN + 2as (coeffs) + 2aT {coeffi) + aB ]]TP 

= aE[®TE +(l-e)T°}+aN{QTN +(l-e)T°]+aB[®TB +(l-@)T°} 
+ [a°P - (1 - ®)[aE + 2aw {coeffw) + aN + 2as (coeffs) 

+ 2aT (coeffi) + aB Jr,0 + ®[2aw [(coeffw)Tx - (flwccoeffw)q\ ] 
+ 2as [(coeffs)Ta - (fluxcoeffs)q"s ] 

+ 2aT [(coeffi)Ta - (fluxcoefft)q",op -(radcoefft)^ ] 

+ (1 - ®)[2aw [(coeffw)Ta - (fluxcoeffw)q" w ] 

+ 2as [(coeffs)TK - (fluxcoeffs)q"s ] 

+ 2aT {(coeffi)^ - (fluxcoefft)q",op -(radcoefft)TP
A ] (3.44) 

by putting heat flux terms from equation (3.7), equation (3.42) may be written as 

[a°P + e[aE + 2aw (coeffw) + aN+ 2a s (coeffs) + 2aT (coeffi) + aB ]Jrp 

= aE [®TE + (1 - ®)T°]+ aN [®TN + (1 - 0)7;° ]+ aB [®TB + (1 - 0)7B° ] 

+ [a°P - (1 - G)[aE + 2aw (coeffw) + aN + 2as (coeffs) 

+ 2aT (coeffi) + aB flr/ + [2aw (coeffw) +2as (coeffs) + 2aT (coefft)]Tx 

- 2aw (fluxcoeffw)q"w-2as (fluxcoeffs)q" s -2aT (fluxcoefft)q", 
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• 2aT (fluxcoejft)q"source -2aT (fluxcoefft)q"boiling -2aT (radcoeff)Tp
4 (3.45) 

and, the discretised equation may be written as 

[a°P + ®[aE + 2aw (coeffw) +aN + 2as (coeffs) + 2aT (coeffi)+ aB fl7/p 

- ®aETE - eaNTN - ®aBTB = (1 - ®)[aET° + aNT°N + aBT<B ] 

a°p - (1 - ®)[aE + 2aw (coeffw) + aN + 2as (coeffs) + 2aT (coeffi)+ aB ]r, 

2aw (coeffw) + 2as (coeffs)+ 2aT (coeffi)]Tx - 2aw (fluxcoeffw)q" w 

- 2as (fluxcoeffs)q"s -2aT (fluxcoeß)q", -2aT (flwccoeffi)q" source 

- 2aT (flwccoefft)q\oiling -2aT (radcoeff)TP (3.46) 
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Figure 3.5 Front-Left Edge 

By using equations (3.28-3.31), equation (3.27) can be written as 
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r+Ä 

pfrP-tW= J U5"5 
<5c. 

up w 
■PE  J ÖCfyp J. 

it+\ u^ T -T 

4i «v y 

T -T 
kAP   s 

* 5f y 

* 

/+A/ 

M, 
T _r 
-'r    if 

f 

PT     J 

T -T ^ 

v & £/>     / 

* (3.47) 

In equation (3.47), 7^ and Ts take the value of equation (3.8). By using these values 

and equation (3.35), we have 

pP'   7>°)AF=e| 
Ar 

kA 

Sc 
(TE-TP)~ IKMT     KJr+hAmT.-<f*&i 

PE &, WP 
TP~ 

WP 

2k
w+K&wp 

2k A 
+^-(TN-TPy 

fypN WSP 

2ksTp+hsfyspTx-<f'sSy; SP 

' & 
(TP-TB) 

BP 

+ (1-0) 

2ks +hsfySP 

( 
7 

P 

&PT 

KA ,JQ   „p.   2£»A  jo   2kvTP +K^WP^CO ~V"w Sx-wp 

+ki^(TN-rP)-^
r 

fypN WSP 

CKpE CKfyp      y 

jo   2ksT?+hsfySPTx-q"sfySP 

2ks +hsfySP 

2kw +hw&m, 

k.A, f"-t  ST0       T'0\      ^b^b /"rO 

& 
<rr

0-r;> KAu 

PT ÖZ 
(rP-rB) 

BP 

(3.48) 

Equation (3.48) may be arranged as 

DC + 0 
At 

k»A„      ZK,„A„ e    e    , w    v 

OKpE ÜXyyp 

2k. 

2kw + KSxwp j 
+ - 

+ - 
2k A. f 

*. SP 

1-- 
2k, 

^     2ks + hsSySP J    SzpT     öz 
, k,A,     kbAb 

T 1" ■ 

BP 

n     n 

fypN 

_ keAe 
lp ~ 

STY 
PE ÖX 

[0r£+(i-0)r£°] 
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+ ̂ - [®TN + (i - 8)7$ ]+£4- [©rr + (i - e)TT°]+M. [@rB + a _ ©^ ] 
dyPN dZpj. dzBP 

pc^--(l-&) 
At 

keAe    2kWA'W 
. f 

- + 

+ - 
2k A 

Sy SP 

( 
- 1 

V 

( 

2k 

SxDr      Sx 

2k. 

\ 2K + h„Sx, wuxWP J 

fC„A„ n    n 

Zk,+K&sp 

. K-A-t    kbAb 

(Ju p'p \JZi ryp 

7>°+0 

fypN 

2kwAw   ^aXjypT^ - q w Sx^, 

Sx^ I      2kw + hdxv 

2M. (KfyspT^-tf.fysp 

+ 

fysp I     2ks+hs8ySP 

2KAs(hsSySPTx-q"sSySP 

Sy SP 2ks+hsSy ls^SP 

+ (1-0) 
2kwAw 

wp   V 

Sx, 

■w   '   "v/^^WP 

\ 
■WP 

wp   V 2K + KSx VI 'wuxWP J 

(3.49) 

Equation (3.49) may be re-arranged as 

DC + 0 
At 

k.A.    2k A. e    e _i_        w    w h^OXwp 

Sx PE Sxjyp   y2kw + h^SXwp j 

.knAn    2ksAs 

. kfAt    kbAb 

Szpj.     SzBP 

T = lp 
k.A. 

fypN      Sy 

k*,-A.„ 

SP 

KSy, syrsp 

K2ks+hsSySPj 

Sx 
[®TE +(1-®)TE

0
]+^L[®TN +(1-0)7^] 

PE Sy PN 

fch-A-i, 
+^-[®TT +(i-0)rr°]+-^^[©r5 + (i-0)rs°]+ 

Sz PT Sz BP 

AV pc—-(l-®) 
At 

k.A. 
Sx PE 

2.KWA„ 

Sx, wp 

f7wäxm> 

\2kw +hwSxwp j 

K~A„      LK.A. ,      n    n    , s    s 

SP SyPN     Syt 

KSy, s^SP 

s2ks+hsSySPj 

+ -L-L + - 
U** DT* CK DD 

T--0 
LP 

+ 0 
f   h..Sx^T w^^WP^x q\ Sx, w ^WP 

V 2£w + "W"*W    2kw + h^SXwp j 
+ - 

2k A 

Sy, SP 

2ks+hsSySP) 
+ (1-0) 

Z/C„, A„ 

Sx, WP 

hsSySPTx 

\2ks+hsSySP 

II       c„ ^ 
 */   w OXjyp 

\2kw + nwSxwp     2kw + h^SXwp y 

h Sx   T 

+ 
2ksAs{   hsSySPTx 

Sy, SP 

q\ sy, 
\ 

s "SSP 

2ks+hsSySP    2ks+hsSySP 
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By putting the coefficients from the previous section, equation (3.50) may be written as 

[a°P + ®[aE + 2aw (coeffw) +aN + 2a s (coeffs) + aT + aB Jr? 

®TE + (1-®)T° + aN[®TN + (\-®)T°]+aT[®TT + (1-0)^°] 

®TB + (\-®)T°}+[ap -(l-®)[aE + 2aw(coeffw)+aN 

+ 2as(coeffs) + aT + aB^ + ®[2aw[(coeffw)Tx - (fluxcoeftyq" w] 

+ 2as[(coeffs)Tx -(fluxcoeffs)q"'J+(1 -®)[2aw[(coeffw)TK -(fluxcoeffw)q"w] 
+ 2as [(coeffs)^ -(fluxcoeffs)q" s J (3.51) 

= a 

+ a 

Equation (3.51) may be arranged as 

[ap1 + ®[aE + 2aw {coeffw) +aN + 2a s (coeffs) + aT + aB ]Jrp 

+ aN[®TN+(l-®)T°]+ar[®Tr+(l-®)TT°] 

+ [a°p - (1 - ®)[aE + 2aw (coeffw) +aN 

+ 2as (coeffs) + aT + aB JT/ + [2aw (coeffw) + 2a s (coeffs)]T„ 
- 2aw (fluxcoeffw)q\ -2a s (fluxcoeffs)q" s 

= a 

+ a 

®TE+(1-®)T° 

®TB + (1-®)T° 

(3.52) 

Finally, the discretised equation may be written as 

[a°p + ®[aE + 2aw (coeffw) +aN + 2as (coeffs) + aT + aB ]frP - ®aETE - ®aNTN 

-®aTTT -®aBTB = (\-®)[aET« +aNT°N +aTTT° +aX]+[ai -0-®)k 

+ 2aw (coeffw) + aN + 2as (coeffs) + aT + aB JT/ + \2aw (coeffw) + 2as (coeffs)^ 
- 2aw (fluxcoeffw)q\ -2a s (fluxcoeffs)q" s (3.53) 
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4.        Bottom Face 
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By using equation (3.30-3.33), equation (3.29) may be written as 

t+t* 

fc(TF--®&y= J k^--5 
3c, PE  J 

(        T —T ~\ 

^ tyvp J 

t+öt '    r„-2^ 
">I4I     c 

#/>. 

^      ^   ^A 

V        ^7w J 

T -T xp   xs 

y       Wsp j 
u it 

t+&i 

k.A TT-^ 
A r 

& w  y 
Ä (3.54) 

In equation (3.54), TB takes the value of equation (3.8). By applying this and equation 

(3.35) to equation (3.54), we have 

At 
KAe (TE -TP)-^(TP -TW) + ^{TN -TP) 
Sx PE ÖX, wp Sy PN 
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öySP öz 

+ (1-0) 

2kU b-"-b 

PT Öl BP 

T - 
2kbTp+hbözBPTm-q"bözBP 

2kb+hbözBP j 

\
X
E     

1
P)      -       \1p~Iw) + ~7      ^w_ipJ_T \Ip~Is) 

tew» qyPN öys öx PE 

0      rrO 

"■WP 'SP 

{ k,At     Q    r0     2kbAb (   Q    2^r,° + ^&^rM - q\ özBP \ 

°-       7 ° P 2kb+hh& öz PT ÖZ BP 'b^BP 

(3.55) 

Equation (3.55) may be arranged as 

pc + © 
At 

keAe ^ kwAw    knAn    ksAs    ktAt    2kbAb 

ox PE ÖX, wp 

k.A. 

öy 

kA 
PN öysp    özpT öz BP 

1 — 
2h 

2kb+hböy, BP J 

ÖX 
[®TE +(I-G)T°]+-£-?-[®TW +(i-0)r;]+^[©r, +(i-0)r„°] 

PE ÖX, WP öy, PN 

k.A, +^-[0r5+(i-0)rs
o]+^[0rr+(i-0)rr

o]+ 
öy, SP öz PT 

pc—-(1-0) 
At 

k.A. 
öx PE 

kwAw  | knAn     ksAs     ktAt     2kbA 

öx 

+ 0 

• + • + + • 
WP fypN fysP fcpT 

■+■ 
ÖZ BP 

2k, 

2kbAb 

öz BP 

K&BPT«>-q"b& 

2kb+hbözBP 

BP + (1-0) 
2kbAb 

2kb + hböyBP ) 

ÖZ BP 2kb+hbözBP     jj 
(3.56) 

Equation (3.56) may be re-arranged as 

OC + 0 
At 

K.A.      K„,A„,      K„A„      K,A,      K.A, 

ÖX PE ÖX 
■ + ■ 

WP fypN     öy, 
+- 2kbAb 

SP öz PT ÖZ BP 

hbözBP 

>2kb +hbözBP , 
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k.A. [®TE +(I-®)T°]+^[®TW +(I-&)T:]+-^[®TN +(i-0)r;] 
<-PE VAWP 

+^p-[®Ts +(i-0)rs°]+M-[0rr +(i-0)rr°]+ 

k^A 

'FT 

fypN 

AV 
pc=—-(l-®) 

-w—w       ■-„—„       -s—s   ,   *fA   .   ^b-"-b &„A„      ICrAr 

8x, WP fypN        $>SP        & PT & BP 

hbdzBP 

2kb+hbözBPj 

At 

T;+® 

k.A. 
8x 

2kbAb 

dz BP 

K&BPT„ q\ & BP 

2kb + hbözBP    2kb + hbdzBP j 
+ (1-0) 

2kbAb 

dz BP 

K&BPT« 

2kb+hbSzBP 

q\ dz BP 

2kb+hb8zBPj 

PE 

(3.57) 

By using the defined coefficients, equation (3.57) may be written as 

[a°P + e[aE + aw +aN +as+aT + 2aB {coeffb)^P = <*E [®TE + (1 - ®)T° ] 

+ aw[®Tw + (l-®)T°}+aN[®TN + (l-®)T^]+as[®Ts + (1-0)7?] 

+ aT [®TT + (1 - ®)T° ] + [a°p - (1 - ®)[aE + aw +aN +as+aT + 2aB (coeffbj^T* 

+ ®[2aB [((coeffl?)TK ) - ((fluxcoeßb)q" b)] 

+ (1 - ®)[2aB [{(coeffl>)Tj-((fluxcoeJ?b)q"b)] (3-58) 

■^0 
lp 

And, the discretised equation may be written as 

[a°p + ®[aE + aw +aN + as+aT + 2aB (coeffbj$Tp - ®aETE - ®awTw - ®aNTN 

-®asTs -®aTTT = (1 -®)[aET° + awT« + aNT° + asTs° + aTTT°]+ [4 

- (1 - ®)[aE +aw+aN+as+aT + 2a B (coeffb)^ + [2aB (coeffb)]Tx 

-2aB{fluxcoefib)q\ (3-59) 

The resulting discretised equations for the other parts of the workpiece are as follows 
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5.       Left-Back-Top Corner 

[a°p + ®[aE + 2a w (coeffw) + 2a N (coeffh) + as+ 2aT (coeffi) + aB^Tp- OaETE 

-easTs -®aBTB = (1 -®)[aET° + asTs° + aBT°]+ [a°P -(1 -®)[aE + 2aw(coeffw) 

+ 2a N (coeffh) + as+ 2aT (coeffi) + aB ]TP + [2aw (coeffw) +2aN (coejfn) 

+ 2aT (coej?t))rx - 2aw (fluxcoeffw)q" w -2aN (flvxceeffn)q\ ~2aT (flwccoefft)q"', 

- 2aT (fluxcoeffi)q"source -2aT (flvxcoefft)q\oiling 

- 2aT (radcoeff)Tp (3.60) 

6. Right-Back-Top Corner jsjgni-uacK-1 op corner 

[ap + S[2aE (coeffe) + aw + 2aN (coeffh) + as+ 2aT (coeffi) + aB J7> - ®awTw 

-easTs -®aBTB = (\-®)[awT° +asTs° + aBT
Q

B]+[al - (I-®)[2aE (coeffe) 

+ aw + 2a N (coejfn) + as + 2aT (coeffi) + aB ]TP + \2aE (coeffe) +2aN (coeffh) 

+ 2aT (coeffi)]Ta - 2aE (fluxcoeffe)q"e -2aN (fluxcoeffh)q\ -2aT (fluxcoeffi)q", 

- 2aT (fluxcoeffi)q"smrce -2aT (fluxcoeffi)q"'Mllllg 

- 2aT (radcoeff)Tp (3.61) 

Right-Front-Top Corner 

[a°p + ®[2aE (coeffe) + aw+aN+ 2as (coeffs) + 2aT (coeffi) + aBjr, - ®awTw 

-®aNTN -®aBTB=(l-®)[awT° +aNT°N + aBTB°]+[a°p - (I-®)[2aE (coeffe) 

+ aw +aN + 2as (coeffs) + 2aT (coeffi) + aB ]TP + [2a E (coeffe) +2as (coeffs) 

2aT (coeffi)^ - 2aE (fluxcoeffe)q"e -2as (fluxcoeffs)q"s -2aT (fluxcoefft)q", 

- 2aT (fluxcoeffi)q"smrce-2aT (fluxcoeffi)q"'bt>aiHg 

-2aT (radcoeff)Tp (3.62) 
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8. Left-Back-Bottom Corner 

[a°p + ®[aE + 2aw {coeffw) + 2a N {coeffh) + as+aT+ 2aB{coeffb)^p - ®aETE 

-®asTs -®aTTT = (1 - ®)[aET° + asTs° + aTTT°]+ [a°P - (1 - ®)[aE + 2aw{coeffw) 

+ 2a N {coeffh) + as+aT+ 2aB (coeffbjfr? 

+ \2aw {coeffw) +2aN {coeffh) + 2aB {coeffbj\Tx - 2aw {fluxcoeffw)q" w 

- 2aN {fluxcoeffh )q\ -2aB {fluxcoeffb )q\ (3.63) 

Right-Back-Bottom Corner 

lw [a°p + ®[2aE {coeffe) + aw+ 2aN {coeffh) + as+aT+ 2aB {coeffb)fP - ®awTw 

-®asTs -®aTTT = {l-®)[awT° +asTs + aTT°]+[a°p -{l-®)[2aE {coeffe) 

+ aw+ 2a N {coeffh) + as+aT+ 2a B {coeffb)]rp 

+ [2aE{coeffe) +2aN{coeffh)+ 2aB{coeffbj\Tco - 2aE{fluxcoeffe)q"e 

- 2a N {fluxcoeffh)q"n -2a B {fluxcoeffb)q" b (3.64) 

10.      Left-Front-Bottom Corner 

[ap + ®[aE + 2aw {coeffw) + aN+ 2as {coeffs) + aT+ 2aB {coeffb)\$TP - ®aETE 

-®aNTN -®aTTT = {\-®)[aET° +aX +aTTT°]+[a°p - {I - ®)[a E+2aw {coeffw) 

+ aN+ 2as {coeffs) + aT+ 2aB {coeffb)]rp 

+ [2aw {coeffw) +2as {coeffs) + 2aB {coeffbj\Tx - 2aw {fluxcoeffw)q"w 

- 2a s {fluxcoeffs)q"s -2a B {fluxcoeffb)q" b (3.65) 

11.      Right-Front-Bottom Corner 

[a°p + ®[2aE{coeffe) + aw+aN+ 2as {coeffs) + aT+ 2aB{coeffb)\fP - ®awTw 

- ®aNTN - ®aTTT = (1 -®)[awT° + aNT° + <*X]+ [4 - (1 - ®)[2aB{coeffe) 

+ aw +aN+ 2a s {coeffs) + aT + 2a B {coeffb)]rp 

+ [2aE {coeffe) +2as {coeffs) + 2aB {coeffb)^ - 2aE {flvxcoeffe)q\ 

-2as{fluxcoeffs)q"s+2aB{fluxcoeffb)q"b (3.66) 
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12.      Top Face 

[a°p +®[aE +aw+aN +as + 2aT(coefft) + aB^P -®aETE -®awTw 

-GaNTN -®asTs -®aBTB =(\-<d)\aET°E +awT° +*X + rf + <vC] 

+ [a°p - (1 - ©)[aE +aw+ aN +as+ 2aT (coefft) + aB ])TP
0 

+ [2aT (coefft)]Tx - 2aT (fluxcoefft)q", -2aT (fluxcoefft)q"source 

- 2aT (ßuxcoeß)q"boiling -2aT (radcoeff)TP* (3.67) 

13.      Front Face 

[a°p + e[aE +aw+aN+ 2as(coeffs) + aT + aB~§TP - ®aETE - ®awTw 

- ®aJN - ®aTTT - ©aBTB = (1 -®)[aET° +awT°+ aNT° + aTTT° + aBT«B ] 

+ [a°p - (1 - ©)[aE +aw+aN+ 2as (coeffs) + aT+aB JT/ 

+ [2as(coeffs)Yx -2as(fluxcoeffs)q"s (3.68) 

14.      Back Face 

[a°p + ®[aE +aw+ 2aN(coeffh) + as + aT + aB~§TP -®aETE - ®awTw 

-®asTs -®aTTT -®aBTB = (\-®)[aET° + awT°+asTs°+aTTT°+aBT°] 

+ [a°p - (1 - ©)[aE +aw+ 2aN (coeffn) + as + aT + aB JT/ 

+ [2aN(coeffh)]rx -2aN(fluxcoeffh)q\ (3.69) 

15.      Left-Lateral-Face 

[a°p + ®[aE + 2aw (coeffw) + aN + as + aT + aB \jfp - ®aETE - ®aNTN 

- ®asTs - ®aTTT -®aBTB = (1 - ®)[aET° + aNT° + asr5° + aTT* + aBTB ] 

+ [a°p - (1 - ®)[aE + 2aw (coeffw) + aN+as+ar+aB JT/ 

+ [2aw (coeffw)]Tx - 2aw (flwccoeffw)q\ (3.70) 
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16.      Right-Lateral-Face 

[a°p + ®[2aE (coeffe) + aw + aN + as + aT + aB^TP - ®awTw - ®aNTN 

- ®asTs - ®aTTT - ®aBTB = (1 - ®)[awT° + aNT° + asTs° + aTTT° + aBT°B ] 

+ [a°p - (1 - ®)[2aE (coeffe) + aw + aN + as + aT +aB ^° 

+ [2aE(coeffej\rx -2aE(fluxcoeffe)q"e (3.71) 

17.      Front-Top Edge 

[a°p + ®[aE + aw+aN + 2as (coeffs) + 2aT (coeffi) + aB \$TP - ®aETE 

-®awTw -®aNTN -®aBTB=(l-®)[aET° + awT° +asT*+aBT*\ 

+ [a °p - (1 - ®)[aE +aw+aN+ 2as (coeffs) + 2aT (coeffi) + aB Jrp
0 

+ [2as (coeffs) + 2aT (coefft)]Tn - 2as (fluxcoeffs)q"s -2aT (fluxcoefft)q"t 

- 2aT (fluxcoeffi)q"source -2aT (fluxcoefft)q" boiling 

-2aT(radcoeff)TP
4 (3.72) 

18.       Front-Bottom Edge 

[ap + ®[aE +aw+aN+ 2as (coeffs) + aT+ 2aB (coeffbj§Tp - ®aETE 

- ®awTw - ®aNTN - ®aTTT = (1 - ®)[aET° + awT° + aNT° + aTT° ] 

+ [a°p - (1 - ®)[aE +aw+aN+ 2as (coeffs) + aT+ 2aB (coeffbj§T°p 

+ [2as (coeffs) + 2aB (coeffb)]Tx 

- 2a s (fluxcoeffs)q"s -2a B (fluxcoeffb)q" b (3.73) 

19.      Back-Top Edge 

[a°p + ®[aE +aw+ 2aN (coeffn) + as+ 2aT (coeffi) + aB ]j7> - ®aETE 

-®awTw -®asTs -®aBTB = (1-0)^^° +awT° +asTs° +aBT°] 

+ [a°p.- (1 - ®)[aE + aw + 2aN (coeffn) + as+ 2aT (coeffi) + aB JT/ 

+ [2aN (coeffn) + 2aT (coefft)]Tx - 2aN (fluxcoeffh)q"n -2aT (fluxcoeffi)q"\ 

- 2aT (fluxcoeffi)q"source -2aT (flvxcoefft)q\oüing -2aT (radcoeff)^ (3.74) 



20.      Back-Bottom Edge 

[a°p + ®[aE + aw + 2a N(coeffii) + as+ar+ 2a B(coeffib)^Tp - ®aETE 

-®awTw -®asTs -®aTTT = (\-®)[aET° + awT° + asTs° +aTTT°] 

+ [a°p - (1 - ®)[aE +aw+ 2aN (coeffii) + as+aT+ 2aB (coejfb)^ 

+ [2a N (coeffii) + 2a B (coeJfb)]Tx 

- 2a N (fluxcoeJfh)q"n -2a B (fluxcoeffib)q" b 

21.      Front-Right Edge 

(3.75) 

[a°p + ®[2aE (coejfe) + aw+aN+ 2a s (coeffs) + aT+aB^Tp- ®aw Tw 

-®aNTN -®aTTT -®aBTB = (l-®)[awT° +aNT°N +aTTT° +aBT«B] 

+ [a°p - (1 - ®)[2aE (coejfe) + aw+aN+ 2as (coeffs) + aT+aB JT/ 

+ [2a E (coejfe) + 2a s (coejfi)]Tx 

- 2aE (fluxcoejfe)q"e -2a s (fluxcoeffs)q"s (3.76) 

22.       Back-Left Edge 

[a°p + ®[aE + 2aw (coeffw) + 2aN (coeffii) + as + aT + aB J7> - ®aETE 

- ®asTs - ®aTTT - ®aBTB = (1 - ®)[aET° + asTs° + aTTT° + aBT° ] 

+ [a°p - (1 - ®)[aE + 2aw (coejfw) + 2aN (coeffii) + as+aT+aB J7>° 

+ [2aw (coejfw) + 2a N (coeffin)]Tx 

- 2aw (fluxcoeffiw)q\ -2a N (jluxcoeffn)q\ (3.77) 

23.      Back-Right Edge 

[a°p + ®\2aE (coejfe) + aw + 2aN (coeffii) + as + aT + aB §TP - ®awTw 

-®asTs -®arTT -®aBTB =(\-®)[awT° +asTs°+aTTT° +aßrß°] 

+ [aJ - (1 - ®)[2aE (coejfe) + aw+ 2aN (coeffn) + as+aT+aB ^ 

+ VaE (coeffe) + 2aN i.coejfh)]rx 

- 2aE (fluxcoeffe)q\ -2aN (fluxcoeffii)q\ (3.78) 
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24.      Left-Lateral-Top Edge 

[a°P + ®[aE + 2aw (coeffw) + aN+as+ 2aT (coefft) + aB \^P - ®aETE 

- ®aNTN - ®asTs - ®aBTB = (1 - ®)\aET°E + aNT° + <rf + aBT°B ] 

+ [a°p - (1 - ®)[aE + 2aw (coeffw) + aN+as+ 2aT {coefft) + aB Jrp
0 

+ [2aw (coeffiv) + 2aT (coefft)]Tx - 2aw (fluxcoeffw)q" w -2aT (fluxcoeffi)q"t 

- 2aT (fluxcoeffi)q"source-2aT (flwccoefft)q"boiling 

-2aT(radcoeff)T* (3.79) 

25.      Left-Lateral-Bottom Edge 

[a°p + ®[aE + 2aw (coeffw) + aN+as+aT + 2a B (coeffbj§TP - ®aETE 

- ®aNTN - ®asTs - ®aTTT = (1 - ®)[aET° + aX + «rf + «rf ] 

+ [a I - (1 - ®)[aE + 2aw (coeffw) + aN+as+aT+ 2a B (coeffb)^° 

+ [2aw (coeffw) + 2aB (coeffbj\Tx 

- 2aw (flvxcoeffw)q\ -2aB (fluxcoeffb)q" b (3.80) 

26.      Right-Lateral-Top Edge 

[a°p + ®[2aE (coeffe) + aw+aN+as+ 2aT (coefft) + aB jrp - ®awTw 

- ®aNTN - ®asTs - ®aBTB = (1 - ®)[awT» + aNT°N + asTs° + aBT°B ] 

+ [a°p - (1 - ®)[2aE (coeffe) + aw+aN+as+ 2aT (coefft) + aB Jrp° 

+ [2aE (coeffe) + 2aT (coefft)^ - 2aE (fluxcoeffe)q"e -2aT (fluxcoeffi)q"t 

- 2aT (fluxcoefft)q"source-2aT (fluxcoeffi)q"boiling 

-2aT(radcoeff)Tp
4 (3.81) 
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27.      Right-Lateral-Bottom Edge 

[a°p + ®[2aE (coeffe) + aw +aN+as+aT+ 2a B (coeffbj^- ®awTw 

- ®aNTN - ®asTs - ®aTTT = (1 - ®)[awT° + aNT° + asTs° + aTTT°] 

+ [a°p - (1 - ®)[2aE (coeffe) + aw + aN +as+aT+ 2aB (coeffbjfr? 

+ [2a E (coeffe) + 2a B (coeffb)]Tx 

- 2a E (fluxcoeffe)q"e -2a B (fluxcoeffb)q\ (3.82) 
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IV.    RESULTS AND DISCUSSION 

Results are presented for the different cases discussed in greater detail below. As 

noted earlier, a variable sized and moving numerical mesh was used in such a way that 

the arc was always positioned at the center of the mesh where the spacing is the finest. 

The goal is to be able to resolve the large temperature gradient features around the arc 

and yet not incur a large overhead of computer resources, which would be required, if the 

grid was uniformly fine all over. This strategy however did require that a separate mesh 

generating routine be used which did demand some extra computational resources. The 

weld pool region was also modeled as a solid region but with a thermal conductivity 

higher than the surrounding unmelted region to simulate the effects of weld pool 

convection. The discontinuity in the thermal conductivity boundaries was handled using 

the standard technique of employing harmonic averaging at the boundary. Since the 

coefficients of the system of equations depend on the temperature, an iterative solution 

technique was used to achieve convergence in such a way that the maximum temperature 

difference between two consecutive iterations at any grid point was no more than 0.1 °C. 

The numerical solution method was used to examine different cases in freshwater 

for a 40-mm-thick 70 x 90 mm workpiece with a moving heat source in the positive y- 

direction. 

Case la: 

The validity of the numerical model was compared to Rosenthal's three- 

dimensional solution for a moving heat source. At this point, convective, radiative and 

boiling surface thermal conditions were not considered. A constant thermal conductivity 
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value and a point heat source were used in the calculations. The input data used in 

computations for case la are shown in Table 1. The calculations were made up to 3.6 

seconds. The numerical results show excellent agreement with the analytical results of 

Rosenthal (Figure 4.1 and Figure 4.2). 

Workpiece :    Length = 70 mm,        Width = 90mm, 
Water temperature:     T=27°C (300.15 K) 
Power input into workpiece :    Q = 2544 W 
Arc torch speed :    vy = 4 mm/s 
Radius of heat input distribution :    r0 = 4.5 mm 
Thermal conductivity :   k = 53 W/m K 
Density of steel:   p = 7854 kg/m3 

Specific heat of steel:   Cp = 509.3 J/kgK 

Thickness = 40mm 

Table 1.        The input data used in computations for case la 

(a) 
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(b) 

Figure 4.1      Rosenthal's point heat source solution: 
(a) Profile; (b) Front-view. 

(a) 
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7000 

0.01 0.005 0 -0.005 -0.01 
Distance from Torch Center (mm) 

Figure 4.2 

(b) 

The numerical model point heat source solution: 
(a) Profile; (b) Front-view. 

Case lb : 

In this case, the surface thermal boundary conditions of boiling heat transfer were 

now included. Other relevant data is given in Table 2. 

Workpiece :    Length = 70 mm,        Width = 90mm, Thickness - 40mm 
Water temperature:     T = 27°C (300.15 K) 
Saturation temperature:     T= 100 °C (373.15 K) 
Water depth:     l = 0ft 
Total pressure:    P = 101.325 kPa 
Power input into workpiece :     Q - 2544 W 
Arc torch speed :    vy = 4 mm/s 
Radius of heat input distribution :     r0 = 4.5 mm 
Thermal conductivity ; k (W/m K) 

53 - 0.04 (T-300) 300 < T(K) < 1000 
25 + 6.25 x ia3(T-1000)      1000 < T(K) < 1800 
125 T(K) > 1800 

Emissivity :     £ = 0.82  

Table 2.        The input data used in computations for case lb 

48 



The top surface temperature values at 0.5 seconds can be seen in Figure 4.3 and 

Figure 4.4. At 0.5 seconds, the temperature distribution is almost symmetric about the 

position of the arc. The temperature distribution around the arc center is above the 

melting temperature of the workpiece (Tm = 1800 K). To see the depth of the weld pool 

penetration, the melting temperature contours were plotted for different surfaces (Figure 

4.5) and the weld pool depth was shown through the melting temperature points by using 

a curve-fit (Figure 4.6). Because of the brief reaction time, the arc heat input penetration 

to the workpiece is limited and a well-formed weld pool cannot be seen. [Ref. 16] 

0.05 

y-axis (m) -°DB    -005 x-axis (m) 

Figure 4.3      Top surface  t=0.5 sec 
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Figure 4.4      Top surface (profile) t=0.5 sec 
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Figure 4.5      The weld pool surface characteristics 
by the T=1800 K contours t=0.5 sec 
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Figure 4.6      The weld pool (front-view) t=0.5 sec 

At t = 2.0 sec, the results reveal that the temperature distribution has already 

reached steady state. Due to the moving heat source, the small change of slope of the 

temperature distribution curve can be observed clearly (Figure 4.7 and Figure 4.8). 

Because of the increased reaction time, the melting temperature contours are seen till the 

fourth surface from the top (Figure 4.9). The weld pool width increased to 8 mm and its 

depth to 2.1 mm (Figure 4.10). 
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y-axis (m) -0-06    -005 x-axis (m) 

0.05 

Figure 4.7      Top surface t=2.0 sec 

3000 r 

Figure 4.8      Top surface (profile) t=2.0 sec 
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Figure 4.9      The weld pool surface characteristics 
by the T=1800 K contours t=2.0sec 

0.5 

0 

-0.5 

? 
E 

N 

-1.5 

-2 

-2.5 
1-3-2-10123' * 

x-axis (mm) 

Figure 4.10    The weld pool (front-view) t=2.0 sec 
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At t= 4.5 sec, the change of slope of the temperature distribution behind the arc is 

more evident in Figure 4.11 and Figure 4.12. The melting temperature contours are still 

seen till the fourth surface from the top (Figure 4.13). But, the weld pool depth reached to 

3 mm with a width of 8 mm (Figure 4.14). These results show a good agreement with the 

data from Ref. 16. 

y-axis (m) -006    -0.05 

0.05 

x-axis (m) 

Figure 4.11    Top surface t=4.5 sec 
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Figure 4.12    Top surface (profile) t=4.5 sec 
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Figure 4.13    The weld pool surface characteristics 
by the T=1800 K contours t=4.5 sec 
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Figure 4.14    The weld pool (front-view) t=4.5sec 

Case 2,3,4 : 

In the following cases we do not consider the temperature distribution. Instead, 

the cooling time that elapses between 800 °C and 500 °C is examined for freshwater at 

different temperatures and welding depths. The input data used in calculations are shown 

in Table 3, Table 4 and Table 5. 
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Workpiece :    Length = 70 mm,        Width = 90mm, Thickness = 40mm 
Water temperature:     T = 3 °C (276.15 K) 
Saturation temperature :     T= 114.88 °( Z (388.03 K) 
Water depth :      / = 22 ft (6.706 m) 
Total Pressure :    P = 168.75 kPa 
Power input into workpiece :           Q - -- 3900 W 
Arc torch speed:       vy = 2.75 mm/s 
Radius of heat input distribution :     r0 - = 4.5 mm 
Thermal conductivity; Jc(W/mK) 

53 - 0.04 (T-300) 300 < T(K) < 1000 
25 + 6.25xl0-3(T-1000) 1000 < T(K) <1800 
125 T(K) > 1800 

Emissivity :     S — 0.82 

Table 3.        The input data of calculations at T = 3 C and 1 = 22 ft 

Workpiece :    Length = 70 mm,        Width = 90mm, Thickness = 40mm 
Water temperature:    T=10°C (283. 15 K) 
Saturation temperature :     T= 112.62 ° C (385.77 K) 
Water depth :      1 = 18 ft (5.486 m) 
Total Pressure :    P = 156.492 kPa 
Power input into workpiece :          Q = 3900 W 
Arc torch speed:       vy = 2.75 mm/s 
Radius of heat input distribution :     r0 = 4.5 mm 
Thermal conductivity; k (W/m K) 

53 - 0.04 (T-300) 300 < T(K) < 1000 
25 + 6.25xl0-3(T-1000) 1000 < T(K) < 1800 
125 T(K) > 1800 

Emissivity :     S = 0.82 

Table 4.        The input data of calculations at T = 10 C and 1 = 18 ft. 
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Workpiece :    Length = 70 mm,        Width = 90mm, Thickness = 40mm 
Water temperature:     T= 31 °C (304.15 K) 
Saturation temperature :     T= 115.44 "C (388.59 K) 
Water depth :      / = 24 ft (7.315 m) 
Total Pressure :    P = 171.762 kPa 
Power input into workpiece :           Q = 3900 W 
Arc torch speed :       vy = 2.75 mm/s 
Radius of heat input distribution :      r0 = 4.5 mm 
Thermal conductivity ; k (W/m K) 

53 - 0.04 (T-300)                300 < T(K) < 1000 
25 + 6.25 x 10'3(T-1000)      1000 < T(K) < 11800 
125                                    T(K) > 1800 

Emissivity :     £ = 0.82 

Table 5. The input data of calculations at T = 31 C and 1 = 24 ft. 

The resulting graphs of the water temperature and welding depth effects on the 

peak temperature and the cooling time (between 800 °C and 500 °C) for a point initially 

1.25 mm. behind the arc heat source are shown in Figure 4.15, Figure 4.16 and Figure 

4.17. The cooling times for 800 - 500 °C temperature range are 0.19 seconds(Twater=3 

°C, 1=22 ft.), 0.20 seconds (Twater=10 °C, 1=18 ft.) and 0.33 seconds (Twater=31 °C, 1=24 

ft.) respectively. These cooling times are significantly different from those in the previous 

studies in the literature. Based on the models in this case, it is seen that boiling 

phenomena must be considered for surface heat losses from the weld metal. For 800 °C 

to 500 °C range of the weld metal, film boiling exists and the surface is completely 

covered by a vapor blanket. A high amount of heat transfer from the weld metal to the 

water environment occurs by conduction across the vapor film. The other reason is that 

due to the thermal conductivity equations used in the model, for 800 °C to 500 °C 

ranges, thermal conductivity of steel is low. This causes a decrease in conduction heat 
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transfer from the arc to the studied point. But the high convection heat loss at this point 

causes a rapid cooling rate. Another possible reason is that because of the low welding 

speed and the high thermal conductivity in the weld pool, the workpiece, which has a 

large thermal capacity, absorbs most of the heat energy. After the arc has passed, 

temperature and thermal conductivity at that point drops. Due to the low thermal 

conductivity, the transfer of the absorbed heat energy from the inner part of the 

workpiece to the surface is not sufficient compared to the surface heat loss. This causes a 

rapid cooling rate on the surface. 

During welding, the high heat input to the workpiece increases the degree of grain 

growth. The grain coarsening effect causes a decrease in the grain boundary area. 

Because of the large grain size and the very high cooling rates, the resulting phase is hard 

with Vi > 450, but with a brittle martensitic structure. 
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Figure 4.15    Cooling time and peak temperature for a point 
initially 1.25 mm behind the arc heat source. 
(TWater = 3 C, depth = 22 ft.) 
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Figure 4.16    Cooling time and peak temperature for a point 
initially 1.25 mm behind the arc heat source. 
(TWater= 10 C, depth = 18 ft.) 
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Figure 4.17    Cooling time and peak temperature for a point 
initially 1.25 mm behind the arc heat source. 
(TWater= 31 C, depth = 24 ft.) 
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V.      CONCLUSIONS AND RECOMMENDATIONS 

Compared to experimental methods, numerical solution techniques are very fast, 

effective and economical alternatives. Therefore, the aim of this study was to develop a 

general numerical model for transient, three-dimensional conduction heat transfer 

phenomena in underwater welding process on a thick rectangular plate. Computations 

were presented for different cases. Comparisons of current predictions with results in the 

literature showed good agreement and validated the model. If the material, environment 

and the arc source properties are known, this program can be applied to the different 

types of metals under the wet welding process. 

The numerical model gave important temperature-time data in the critical HAZ, 

which in turn determines material structure. The model also helped to make prediction of 

size of weld pool and its evolution with time. 

The principal recommendations for the future studies may be summarized as 

follows. 

1. The weld pool region itself was modeled, as a solid region. But, owing to 
the presence of the temperature values higher than the melting temperature 
in the weld pool, the model must be considered as a liquid weld pool with 
the surrounding unmelted solid region. So, the numerical model needs to 
be modified to account for weld pool convection with the buoyancy force, 
the electromagnetic force and the surface tension gradient at the weld pool 
surface. 

2. The chemical effects due to interaction of the arc with the surrounding 
water environment may need to be included. 

3. In the model, boiling heat transfer phenomena was accounted for a solid 
surface. For a molten pool region, the role of boiling on a liquid substrate 
is unknown and needs to be solved. 
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APPENDIX A. PROGRAM STRUCTURE 

In the main program <aathl0.m>, non-umform grid spacing was constructed by 

using the exponential function y - he~bx where b is the coefficient which affects the grid 

spacing distribution and h is the sum of the grid spacings when x -»<x>. The application 

of grid spacing to the workpiece was shown in Figure Al. 

Xi      Xn       X3 

(a) 

n3  , r 
h2   , 

r 

(b) 

Figure Al      Applying the grid spacing to the workpiece by using 
the exponential function 
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The distance in front of the moving heat source was called as "front" and the 

distance behind the heat source was called as "back". The width and the thickness of the 

plate were defined with the same terms. The variable "number" was used to define the 

number of grid points in the "back" region. Variables "b" and "number" can be changed 

to control the resolution of the grid spacing. 

To simulate the heat input from the arc to the top surface, it was assumed that the 

arc source heat flux distribution had a Gaussian distribution on the top surface. The 

applied arc heat source was defined as a matrix, which its size was equal to the size of the 

top surface. The value of heat flux at each grid point was calculated by using the x- 

coordinate and the y-coordinate of that point. The resulting arc heat source matrix was 

applied to the top surface. 

The discretised equations was represented by the matrix equation [A] X =b 

where, [A] is the coefficient matrix, X is the column matrix of the unknown temperature 

values of the grid points and b is the column matrix of the constants. In the coefficient 

matrix, the coefficients of the studied grid and the neighboring grids were written to the 

same row. An example for 5x5x2 workpiece was shown in Figure A2. In this example, 

the coefficient matrix may be written as 

cl c2 0 0 0 c6 0...   c26... 

cl c2 c3 0 0 0 c7 0...    c27... 

0 c2 c3 c4 0 0 0 0...      c28... 

0 0... c25. c45... c49 c50 
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Figure A2 The example workpiece 

Even the row number, the column number and the surface number were increased, 

the maximum number of coefficients for each row does not exceed 7. This is for an 

interior grid point of a workpiece with a surface number 3 or more. But, the increasing 

size of the coefficient matrix increases the computing time and the required computing 

memory and storage capacity. To prevent this problem, tridiagonal part of the general 

matrix (Figure A3) which contains Tw, TP and TE coefficients was formed as a new ax3 

matrix (a = row x column x surface). The coefficient values and TN, Ts, TT and TB 

were also formed separately and called as <north>, <south>, <top> and <bottom> 

matrices respectively. The size of each matrix is a x 1 (a = row x column x surface). The 

constant values in the right side of the equation were called as <right> matrix. 
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Figure A3 The coefficient matrix 

Beginning from the first surface, the function program <aasolvelO> solves the 

matrix produced by the main program by using row-by-row iterative sweeping method. 

The representation of row-by-row method was shown in Figure A4 [Ref. 21,22]. The 

statements <indexl> and <index2> defines the first and the last element of each row. 

-O- -6 
W 

-0 

4 ■o -o 

-0- -0- -0- 0- 

• Points at which values are calculated 

o Points at which values are considered 
to be temporarily known 

■  Known boundary values 

—► Sweeping direction 

Figure A4 Row-by-row method representation 
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The matrix <temp_old> represents the old temperature values of the grid points. 

At first, it was initialized and then it took the values of the previous iteration. The matrix 

<temp> represents the temperature values of the grid points, which were found from the 

present iteration. The sizes of <temp_old> and <temp> are (a x b) x c, where a, b and c 

are the total row number, column number and surface number respectively. The statement 

<delta_iteration> represents the absolute value of the difference between <temp_old> and 

<temp>. If <delta_iteration> is less 0.1, the resulting temperature value is satisfactory. 

The statement <count_iteration> counts the iteration number. If the program can not 

converge after 10 iterations, <delta_iteration> increases 0.1 and continues to increase 0.1 

at every following 5 iterations until the program find a converged temperature value. The 

radiation heat flux matrix <radiationl> and the boiling heat flux matrix <q_boiling_free> 

are only used to calculate the heat flux from the top surface.. The sizes of <radiationl> 

and <q_boiling_free> are (a x b) x 1, where a, b are the total row number and column 

number respectively. 

In the <aasolvel0> function program, <north>, <south>, <top> and <bottom> 

matrices were passed to the right side of the equation. Their values were calculated by 

using the temperature values from the previous iterations and the resulting values were 

added to the values of <right>. The diagonal matrix was solved by using Gauss 

elimination method and the values of Tw, TP and TE was found for the present iteration. 

In the <old_templ0> function program, it was assumed that the plane was moving 

with the arc source together (Figure A5). Here, due to the non-uniform grid spacing, it 

was necessary to determine the new position and the temperature value of each grid point 

by using second degree polynomial enterpolation (Figure A6). The values of Ta, Tb and 
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Tc were found by using the old temperatures from the previous time step. These 

temperatures was used to determine the new grid temperature Tx with the second degree 

polynomial enterpolation. 
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Figure A5    Moving plane 
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Figure A6      Grid positioning by using second degree polynomial 
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The function program <save_alllO> saves all 3-D temperature data at each time 

step by overwriting onto. The other function program <save_thelO> saves top surface 

temperatures at each time step into a different file name. 
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APPENDIX B. PROGRAM CODES 

THE MAIN PROGRAM (aathlO.m) 

% Need to define the function below to be able to use mcc 
% The symbol "al" itself has no significance - aathlO is the 
% name of the main program, 
function [al]=aathlO() 

clear     % clear all variables - not present in "aathlOgoon.m" 
close all % close all open figure windows 

% save_me is a counter that is incremented after each time step 
% and is used to decide how often to save the calc temperature 
% data. 
save_me=0; 

% save_counter is a counter that is also incremented with each 
% time step and is appended to the file name into which the temp 
% data is stored. 
save_counter=0;    % not present in "aathlOgoon.m" 

% Tinf is the ambient temp in deg C 
Tinf=27; 

% TO is the initial temp in deg C 
T0=27; 

% sil is the stefan-boltzmann const (SI units) 
sil=5.67E-8; 

% epsilon is the emissivity of the surface 
epsilon=0; 

% x-vel component of torch speed (m/s) 
vel_x=0; 

% y-vel component of torch speed (m/s) 
vel_y=0.004; 

% deltat_t is the time step (in sees) 
delta_t=0.001; 

% Distance source moves in the x-direction in each time step(in m) 
deltax=vel x*delta t; 

% Distance source moves in the y-direction in each time step (in m) 
deltay=vel_y*delta_t; 

% q_up is the heat flux distribution on the upper surface (W/mÄ2) 
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% q_up is the heat flux distribution on the upper surface (W/mA2) 
% imposed by the torch/arc (implemented in matrix form) 
q_up=0; 

%% q is a generic variable representing heat flux that may be 
%% present at any of the other surfaces and can be included 
%% in the nodal equations 

% q_ is constant heat flux through the surfaces 
q_west=0; 
q_east=0; 
q_top=0; 
q_bottom=0; 
q_north=0; 
q_south=0; 

% c is the cp [J/kg-K] 
c=509.3; 

% ro is the density [kg/mA3] 
ro=7 854; 

% Convection heat transfer coefficients from the faces [W/mA2-K] 
he=0; 
hw=0 
hn=0 
hs=0 
ht=0 
hb=0 

% The distances between the grid point points 

%% back is the portion of the moving grid behind the point 
%% of location of the source [in m] 
back=.05; 

% b is the coefft in the exponential gridding function (eA(-b*x)) 
b=.13; 

% number is the no. of grid points in the "back" region 
number=20; 

%% Variables "b" and "number" above can be varied to control the 
%% features of the variable grid, such as change in grid spacing, 
%% etc. 
%% height is a vector that holds the coords of the grid points in 
the back-region. Note that the spacing between these grid 
%% points is the diff. between consecutive height entries and is 
%% stored in "int_back" 
height(1)=0; 
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% Note that int_back(l) > int_back(number), i.e. in reverse order 
for kk=l:number 

height(kk+l)=back*(1-exp(-b*kk)); 
int_back(kk)=height(kk+1)-height(kk) ; 

end 

%% multiply is a scaling factor(close to 1) that scales height and 
%% int_back in such a way that it height(number) = back. 
multiply=back/(sum(int_back)-int_back(l)/2) 
int_back=multiply*int_back; 

%% Similar to back, below are the variables front (front region of %% 
%% moving grid ahead of source), width (width of plate) and 
%% thickness. All distances in m. 
front=0.02; 
width=0.09; 
thickness=0.04; 

%% int_front is the grid spacing in the front region. Initially 
%% set to 0. Then transfer from int-back one by one until sum of 
%% int-front entries exceeds front. 
int_front=0; 
counter=0; 

while (sum(int_front)-int_front(length(int front))/2)<=front 

% int_front below continually changes size as the spacings are 
% added. 
int_front=[int_front,int_back(length(int_back)-counter) ] ; 
counter=counter+l; 

end 

% Set first member which was initially 0 to null. 
% Meaningful spacing starts only from the 2nd member of int_front 
int front(!)=[]; 

%% The grid distance matrix in the y direction is y_intl starting 
%% from the top of front down through the source all the way to 
%% the bottom of back. 
% fliplr is to ge the desired ordering from front to back. 
y_intl=[fliplr(int_front),fliplr(int_back)]; 

% int_side holds grid spacing values over the width. 
% Same logic as for int_front 
int_side=0; 
counter=0; 

while (sum(int_side)-int_side(length(int_side))/2)<=(width/2) 

73 



int_side=[int_side,int_back(length(int_back)-counter)]; 
counter=counter+l; 

end 

int side (!) = []; 

'% The grid distance vector in the x dirextion is x_intl (y_intl 
% above. 
x_intl=[fliplr(int_side),int_side]; 

% The grid distance vector in the z dirextion is z_intl (y_intl 
% above) 
z_intl=0; 

counter=0; 

while (sum(z_intl)-z_intl(length(z_intl))12) <=thickness 

z_intl=[z_intl,int_back(length(int_back)-counter)]; 
counter=counter+l; 

end 

z_intl(!)=[]; 

figure(1) 

subplot(3,1,1) 
plot(x_intl) 
grid on 

subplot(3,1,2) 
plot(y_intl) 
grid on 

subplot(3,1,3) 
plot(z_intl) 
grid on 

% row is the number of y nodes (along the length). 
row = length(y_intl)-1; 

% col is the no. of x-nodes (across the plate width), 
col = length(x_intl)-1; 

% surface is the no. of z-nodes (across the thickness), 
surface = length(z intl)-l; 
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% The value of teta determines the numerical scheme as follows: 

%  for Fully Implicit Method; teta=l 
%  for Crank-Nicholson Method; teta=0.5 
%  for Explicit Method; teta=0 

teta=l; 

% For a a*b*c three dimensional matrix, 
% a:num rows, b:num cols, c:num surfaces. 
% Size of new  > (a*b*c)*3 TP, TE, TW coefficients for the 
% whole grids. 
% Size of top  > (a*b*c)*l TT coefficients for the whole 

.% grids. 
% size of bottom —> (a*b*c)*l TB coefficients for the 
% whole grids. 
% size of north  > (a*b*c)*1 TN coefficients for the whole 
% grids. 
% size of south  > (a*b*c)*l TS coefficients for the whole 
% grids. 
% size of right  > (a*b*c)*1 The values of the righthandside 
% of the matrix. 
% size of temp  > (a*b)*c The temperatures of the grids. 

% new is the coefft matrix for all the grid points in the 3-D 
% volume. 

% 1st col holds the coeffts of the West (W) nodes. 
% 2nd col holds the coeffts of the (P) nodes. 
% 3rd col holds the coeffts of the East (E) nodes. 
new=zeros(row*col*surface, 3) ; 

% right is the const (or b-vector) on the RHS 
right=zeros(row*col*surface, 1) ; 

%% south, north, top, bottom hold the coeffts of the corresponding %% 
grid points. 
south=right; 
north=right; 
top=right; 
bottom=right ; 

% Apply the initial condition to the plate. 
% "temp" is the temperature matrix. 

% temp is a matrix that holds temperature values for each surface. 
% Note dimensions of temp carefully. 
% This initialization is not present "aathlOgoon.m". 
temp=TO*ones(row*surface, col); 
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% Below are parameters that specify the heat/arc source. 
% rO is the effective radius [m] of the gaussian heat source. 
r0=0.0045; 

% ddd is a coefft that determines the gaussian spread. 
% The larger the ddd value, the more pointed the source. 
ddd=3; 

% qrate_total is the total energy transfer rate from the source 
% [Watts] . 
qrate_total = 254 4; 

% qO is the peak heat flux of the gaussian [W/m~2] 
qO=qrate_total*ddd/pi/rOA2; 

% Calculate the q_up (heat flux distribution on the top face) 
%%  xcenter and ycenter are the grid element numbers of the grid 
%% center at which the source/arc is located. 
xcenter=length(int_side); 
ycenter=length(int_front); 

for nn=l:row 
for mm=l:col 

% x(mm) is array with the x-coords of the mesh, 
if mm < xcenter 

x (mm) =-sum(x_intl ( (mm+.l) : xcenter) ) ; 
elseif mm==xcenter 

x(mm)=0; 
else 

x(mm)=sum(x_intl((xcenter+1):mm)); 
end 

% y(mm) is array with the y-coords of the mesh, 
if nn < ycenter 

y(nn)=sum(y_intl((nn+1):ycenter)) ; 
elseif nn==ycenter 

y(nn)=0; 
else 

y(nn)=-sum(y_intl((ycenter+1):nn)) ; 
end 

% initialize q_up using x() and y() coord info. 
q_up(nn,mm)=-qO*exp(-ddd*(x(mm)~2+y(nn)A2)/rOA2); 

end 
end 
figure 

% a mesh command to view the generated grid, 
mesh(x, y,q_up) 
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for time=delta_t:delta_t:200 
% 200 is the final time in sees upto which the program should 
% go... 

save_me=save_me+l; 

disp('the interpolation time is ') 
tic  % beginning of tic-toe loop 

[temp]=old_templ0(row,col,surface,temp,x,y,deltax,deltay) ; 

toe % end of tic-toe loop. 

% figure 
% contour(x,y,temp(1:row,1:col)) 

disp('The matrix formation time is :') 

tic  % beginning of tic-toe loop. 

%% Start to form the matrix by defining every point. 
% Beginning of creation of coefft matrix 
% loops step through each point on all the surfaces, cols and rows 

for kk=l:surface 
for jj=l:row 
for ii=l:col 

% The distances between the reference point and the adjoining 
% nodal points. 

% Distance between P&E and P&W 
xpe=x_intl(ii+1) ; 
xwp=x_intl(ii); 

% Distance between P&N and P&S 
ypn=y_intl(jj); 
ysp=y_intl(jj+l); 

% Distance between P&T and P&B ' 
zpt=z_intl(kk); 
zbp=z_intl(kk+l) ; 

%% The lateral surface areas of the faces of the control volume 
%% around the reference point.P. 

% East-face area. 
Ae=(ypn/2+ysp/2)*(zpt/2+zbp/2); 
Aw=Ae; 
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% North-face area. 
An=(xpe/2+xwp/2)*(zpt/2 + zbp/2) ; 
As=An; 
% Top-face area. 
At=(xpe/2+xwp/2)*(ypn/2+ysp/2); 
Ab=At; 

% The size of the control volume. 

deltaV=(xpe/2+xwp/2)*(ypn/2+ysp/2)*(zpt/2+zbp/2); 

% Routine to set thermal conductivities below: 

% Initialize TEMP()s to 0 for logical ifs below: 
TEMP(1)=0;TEMP(2)=0;TEMP(3)=0;TEMP(4)=0;TEMP(5)=0; TEMP(6)=0; 

% TP0 is the temperature of the current node. 
TP0=temp((kk-l)*row+jj,ii); 

%   T_west=TEMP(l)    T_east=TEMP(2)    T_north=TEMP(3) 
%   T_south=TEMP(4)   T_top=TEMP(5)     T bottom=TEMP(6) 

if ii==l % first col, no west neighbor, so... 
TEMP(1)=TP0; % set T_west to TP0 

elseif ii==col % last col, no east neighbor, so. 
TEMP(2)=TP0; % set T_east to TP0 

end 

if jj—1 
TEMP(3)=TP0; 

elseif jj==row 
TEMP(4)=TP0; 

end 

if kk==l 
TEMP{5)=TP0; 

elseif kk==surface 
TEMP(6)=TP0; 

end 

%% If current node P has a valid neighbor, then use temperature 
%% of that node.... 

if (TEMP(1)==0) 
TEMP(l)=temp((kk-1)*row+jj,ii-1); 

end 
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if (TEMP(2)==0) 
TEMP(2)=temp((kk-1)*row+jj , ii+1) ; 

end 

if (TEMP(3)==0) 
TEMP(3)=temp((kk-1)*row+jj-1, ii) ; 

end 

if (TEMP(4)==0) 
TEMP(4)=temp((kk-1)*row+jj+1,ii); 

end 

if (TEMP(5)==0) 
TEMP(5)=temp((kk-2)*row+jj,ii); 

end 

if (TEMP(6)==0) 
TEMP(6)=temp(kk*row+jj,ii) ; 

end 

% Do loop to calculate k-values of all grid points, 
for kjl=l:6 

% Now set the thermal conductivity values. 

kelvin=TP0+273.15; 
kl=53; % nominal kl-value in W/m-K set here, but.... 

% Actual kl-values are calc below. 
if (kelvin>=300 & kelvin<1000) 

kl=53-0.04*(kelvin-300); 
elseif (kelvin>=1000 & kelvin<1800) 

kl=25+6.25E-3*(kelvin-1000); 
elseif kelvin>=1800 

kl=125; 
end 

% Find the thermal conductivity at the adjacent point. 
kelvin=TEMP(kj1)+273.15; 
k2=53; % nominal k2-value in W/m-K set here, but.... 

% Actual k2-values of neighbors calc here. 
if (ke'lvin>=300 & kelvin<1000) 

k2=53-0.04*(kelvin-300); 
elseif (kelvin>=1000 & kelvin<1800) 

k2=25+6.25E-3*(kelvin-1000); 
elseif kelvin>=1800 

k2=125; 
end 
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% Harmonie mean thermal conductivity found next 
NEW_K(kjl) = 2*kl*k2/(kl+k2); 

end 

% Now redefine k's of the neighboring faces with values from NEW K 
kw=NEW_K(1) 
ke=NEW_K(2) 
kn=NEW_K(3) 
ks=NEW_K(4) 
kt=NEW_K(5) 
kb=NEW_K(6) 

% Coefficients used in developing the discretised equations. 
ae=ke*Ae/xpe; 
aw=kw*Aw/xwp; 
an=kn*An/ypn; 
as=ks*As/ysp; 
at=kt*At/zpt; 
ab=kb*Ab/zbp; 
apO=ro*c*deltaV/delta_t; 
ap=teta*(ae+aw+an+as+at+ab)+apO; 

% Coefficients used for the wall-medium interface part of the 
% discretised equations. 
coeffe=he*xpe/(2*ke+he*xpe); 
coeffw=hw*xwp/(2*kw+hw*xwp); 
coeffn=hn*ypn/(2*kn+hn*ypn); 
coeffs=hs*ysp/(2*ks+hs*ysp); 
coefft=ht*zpt/(2*kt+ht*zpt); 
coeffb=hb*zbp/(2*kb+hb*zbp); 

% Coefficients used for the heat flux part of the discretised 
% equations. 

fluxcoeffe=xpe/(2*ke+he*xpe); 
fluxcoeffw=xwp/(2*kw+hw*xwp); 
fluxcoeffn=ypn/(2*kn+hn*ypn); 
fluxcoeffs=ysp/(2*ks+hs*ysp); 
fluxcoefft=zpt/(2*kt+ht*zpt); 
fluxcoeffb=zbp/(2*kb+hb*zbp); 

% Radiation coefft for surface b.c. - see thesis... 
radcoeff=sil*epsilon*zpt/(2*kt+ht*zpt); 

% row_num is the index of the current point in the matrices being % 
used. row_num varies from 1:surface*col*row 
row_num=(kk-l)*row*col+(jj-1)*col+ii; 

%   For left-back-top corner 

if ((kk==l) & (jj==l) & (ii==l)) 
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% Temperature values for current time step for each relevant node. 
TP0=temp((kk-1)*row+jj,ii) ; 
TE0=temp((kk-1)*row+jj,ii+1) ; 
TS0=temp((kk-1)*row+jj+l,ii) ; 
TBO=temp(kk*row+jj,ii) ; 

% Coeffts of grid points; note south and bottom later are moved to 
% the rhs. ■ 
% "new" is the A-matrix in the solution. 
% Note teta is the parameter which determines the numerical method 
% teta=l:fully implicit; teta=0:explicit; teta=0.5:Crank-Nicholson 
new(row_num,2)=apO+teta*(ae+2*aw*coeffw+2*an*coeffn+as+2*at*coefft+ab); 
new(row_num,3)=-teta*ae; 
south(row_num,1)=teta*as; 
bottom(row_num,1)=teta*ab; 

% "right" is the constant b-matrix on the rhs... 
right(row_num,1)=(1-teta)*(ae*TE0+as*TS0+ab*TB0)+ ... 
(apO-(1-teta)*(ae+2*aw*coeffw+2*an*coeffn+as+2*at*coefft+ab))*TP0+ ... 
(2*aw*coeffw+2*an*coeffn+2*at*coefft)*Tinf - 

2*at*fluxcoefft*q_up(jj,ii) ... 
-2*aw*fluxcoeffw*q_west-2*an*fluxcoeffn*q_north-2*at*fluxcoefft*q_top; 

%% radiation & q_boiling_coeff belong to the rhs but are not included 
%% until later since they depend on the current temperature 

% (a form of quasi-linearization of nonlinear temp terms) 
radiation(row_num,l)=-2*at*radcoeff; 
q_boiling_coeff(row_num,1)=-2*at*fluxcoefft; 

%   for right-back-top corner 

elseif ((kk==l) & (jj==l) & (ii==col)) 

TP0=temp((kk-1)*row+jj,ii); 
TW0=temp((kk-1)*row+jj , ii-1) ; 
TS0=temp((kk-1)*row+jj+1, ii) ; 
TBO=temp(kk*row+jj, ii) ; 

new(row_num,2)=ap0+teta*(2*ae*coeffe+aw+2*an*coeffn'+as+2*at*coefft+ab); 
new(row_num,1)=-teta*aw; 
south(row_num,l)=teta*as; 
bottom(row_num,l)=teta*ab; 

right(row_num,l)=(l-teta)*(aw*TW0+as*TS0+ab*TB0)+ ... 
(apO-(1-teta)*(2*ae*coeffe+aw+2*an*coeffn+as+2*at*coefft+ab))*TP0+ 

(2*ae*coeffe+2*an*coeffn+2*at*coefft)*Tinf- 
2*at*fluxcoefft*q_up(jj , ii)... 

-2*ae*fluxcoeffe*q east-2*an*fluxcoeffn*q north- 

2*at*fluxcoefft*q_top; 
radiation(row_num,1)=-2*at*radcoeff; 
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q_boiling_coeff(row_num,1)=-2*at*fluxcoefft; 

%   for left-front-top corner 

elseif ((kk==l) & (jj==row) & (ii==l)) 

TP0=temp((kk-1)*row+jj,ii); 
TE0=temp((kk-1)*row+jj,ii+1); 
TN0=temp((kk-1)*row+jj-1,ii); 
TB0=temp(kk*row+j j,ii); 

new(row_num,2)=ap0+teta*(ae+2*aw*coeffw+an+2*as*coeffs+2*at*coefft+ab); 
new(row_num, 3)=-teta*ae; 
north(row_num,1)=teta*an; 
bottom(row_num,l)=teta*ab; 

right(row_num,1)=(1-teta)*(ae*TE0+an*TN0+ab*TB0)+ ... 
(apO-(1-teta)*(ae+2*aw*coeffw+an+2*as*coeffs+2*at*coefft+ab))*TP0+ ... 
(2*aw*coeffw+2*as*coeffs+2*at*coefft)*Tinf-2*at*fluxcoefft*q_up(jj,ii) 

-2*aw*fluxcoeffw*q_west-2*as*fluxcoeffs*q_south-2*at*fluxcoefft*q_top; 
radiation(row_num,1)=-2*at*radcoeff; 
q_boiling_coeff(row_num,1)=-2*at*fluxcoefft; 

%  for right-front-top  corner 

elseif ((kk==l) & (jj==row) & (ii==col)) 

TP0=temp((kk-1)*row+jj, ii); 
TW0=temp((kk-1)*row+jj, ii-1) ; 
TN0=temp((kk-1)*row+jj-1, ii) ; 
TB0=temp(kk*row+j j,ii); 

new(row_num,2)=ap0+teta*(2*ae*coeffe+aw+an+2*as*coeffs+2*at*coefft+ab); 
new(row_num,1)=-teta*aw; 
north(row_num,1)=teta*an; 
bottom(row_num,1)=teta*ab; 

right(row_num,1)=(1-teta)*(aw+TW0+an+TN0+ab*TB0)+ ... 
(apO-(1-teta)*(2*ae*coeffe+aw+an+2*as*coeffs+2*at*coefft+ab))*TP0+ 

(2*ae*coeffe +2*as*coeffs +2*at*coefft)*Tinf- 
2*at*fluxcoefft*q_up {j j, ii) ... . 

-2*ae*fluxcoeffe*q_east-2*as*fluxcoeffs*q_south- 
2*at*fluxcoefft*q_top; 
radiation(row_num,1)=-2*at*radcoeff; 
q_boiling_coeff(row_num,1)=-2*at*fluxcoefft; 
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%  for left-back-bottom corner 

elseif ((kk==surface) & (jj==l) & (ii==l)) 

TP0=temp((kk-1)*row+jj, ii); 
TE0=temp((kk-1)*row+jj, ii+1) ; 
TS0=temp((kk-1)*row+jj+1, ii) ; 
TT0=temp((kk-2)*row+jj,ii) ; 

new(row_num,2)=ap0+teta*(ae+2*aw*coeffw+2*an*coeffn+as+at+2*ab*coeffb) ; 
new(row_num,3)=-teta*ae; 
south(row_num,l)=teta*as; 
top(row_num,1)=teta*at; 

right(row_num,1)=(1-teta)*(ae*TE0+as*TS0+at*TT0)+ ... 
(apO-(1-teta)*(ae+2*aw*coeffw+2*an*coeffn+as+at+2*ab*coeffb))*TP0+ ... 
(2*aw*coeffw+2*an*coeffn+2*ab*coeffb)*Tinf ... 
-2*aw*fluxcoeffw*q_west-2*an*fluxcoeffn*q_north- 

2*ab*fluxcoeffb*q_bottom; 

%  for right-back-bottom corner 

elseif ((kk==surface) & (jj==l) & (ii==col)) 

TP0=temp((kk-1)*row+jj,ii); 
TW0=temp((kk-1)*row+jj,ii-1) ; 
TS0=temp((kk-1)*row+jj+1, ii) ; 
TT0=temp((kk-2)*row+jj , ii) ; 

new(row_num,2)=apO+teta*(2*ae*coeffe+aw+2*an*coeffn+as+at+2*ab*coeffb) ; 
new(row_num,l)=-teta*aw; 
south(row_num,l)=teta*as; 
top(row_num,1)=teta*at; 

right(row_num,1)=(1-teta)*(aw*TW0+as*TS0+at*TT0)+ ... 
(apO-(1-teta)*(2*ae*coeffe+aw+2*an*coeffn+as+at+2*ab*coeffb))*TP0+ 

(2*ae*coeffe+2*an*coeffn+2*ab*coeffb)*Tinf ... 
-2*ae*fluxcoeffe*q_east-2*an*fluxcoeffn*q_north- 

2*ab*fluxcoeffb*q_bottom; 

%   for left-front-bottom corner 

elseif ((kk==surface) & (jj==row) & (ii==l)) 

TP0=temp((kk-1)*row+jj,ii) ; 
TE0=temp((kk-1)*row+jj , ii+1) ,• 
TN0=temp((kk-1)*row+jj-l,ii) ; 
TT0=temp((kk-2)*row+jj,ii) ; 

new(row_num,2)=ap0+teta*(ae+2*aw*coeffw+an+2*as*coeffs+at+2*ab*coeffb) ; 
new(row num,3)=-teta*ae; 
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north(row_num,1)=teta*an; 
top(row_num,1)=teta*at; 

right(row_num,l) = (l-teta)*(ae*TE0+an+TN0+at*TT0)+ . . . 
(apO-(1-teta)*(ae+2*aw*coeffw+an+2*as*coeffs+at+2*ab*coeffb))*TP0+ 
(2*aw*coeffw+2*as*coeffs+2*ab*coeffb)*Tinf ... 
-2*aw*fluxcoeffw*q_west-2*as*fluxcoeffs*q_south- 

2*ab*fluxcoeffb*q_bottorn; 

%   for right-front-bottom corner 

elseif ((kk==surface) & (jj==row) & (ii==col)) 

TP0=temp((kk-1)*row+jj,ii); 
TW0=temp((kk-1)*row+jj,ii-1); 
TN0=temp((kk-1)*row+jj-1,ii); 
TT0=temp((kk-2)*row+j j,ii); 

new(row_num,2)=ap0+teta*(2*ae*coeffe+aw+an+2*as*coeffs+at+2*ab*coeffb); 
new(row_num,1)=-teta*aw; 
north(row_num,1)=teta*an; 
top(row_num,1)=teta*at; 

right(row_num,1) = (1-teta)*(aw*TW0+an*TN0+at*TT0)+ . . . 
(apO-(1-teta)*(2*ae*coeffe+aw+an+2*as*coeffs+at+2*ab*coeffb))*TP0+ 

(2*ae*coeffe +2*as*coeffs +2*ab*coeffb)*Tinf ... 
-2*ae*fluxcoeffe*q_east-2*as*fluxcoeffs*q_south- 

2*ab*fluxcoeffb*q_bottom; 

%   for the top surface 

elseif ((kk==l) & (jj>l) & (jj<row) & (ii>l) & (ii<col)) 

TP0=temp((kk-1)*row+jj,ii); 
TE0=temp((kk-1)+row+jj , ii + 1) ; 
TW0=temp((kk-1)*row+jj, ii-1); 
TN0=temp((kk-1)*row+jj-1,ii); 
TSQ=temp((kk-1)*row+jj+1, ii) ; 
TB0=temp(kk*row+jj, ii) ; 

new(row_num,2)=apO+teta*(ae+aw+an+as + 2*at*coefft+ab) ; 
new(row_num,3)=-teta*ae; 
new(row_num,1)=-teta*aw; 
north(row_num,1)=teta*an; 
south(row_num,1)=teta*as; 
bottom(row_num,1)=teta*ab; 

right(row_num,1)=(1-teta)*(ae*TE0+aw*TW0+an*TN0+as*TS0+ab*TB0)+ ... 
(apO-(1-teta)*(ae+aw+an+as+2*at*coefft+ab))*TP0 + 2*at*coefft*Tinf - 

2*at*fluxcoefft*q_up(jj,ii)-2*at*fluxcoefft*q_top; 
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radiation(row_num,1)=-2*at*radcoeff; 
q_boiling_coeff(row_num,1)=-2*at*fluxcoefft; 

for the bottom surface 

elseif ((kk==surface) & (jj>l) & (jj<row) & (ii>l) & (ii<coi; 

TP0=temp( (kk-l)'*row+jj,ii) ; 
TE0=temp((kk-1)*row+jj , ii+1) 
TW0=temp((kk-1)*row+jj,ii-l) 
TN0=temp((kk-1)*row+jj-1, ii) 
TS0=temp((kk-1)*row+jj+1, ii) 
TT0=temp((kk-2)*row+jj,ii) ; 

new(row_num,2)=apO+teta*(ae+aw+an+as+at+2*ab*coeffb); 
new(row_num,3)=-teta*ae; 
new(row_num,l)=-teta*aw; 
north(row_num,1)=teta*an; 
south(row_num,1)=teta*as; 
top(row_num,1)=teta*at; 

right(row_num,1)=(1-teta)*(ae*TE0+aw*TW0+an*TNO+as*TSO+at*TTO)+ ... 
(apO-(1-teta)*(ae+aw+an+as+at+2*ab*coeffb))*TP0 + 2*ab*coeffb*Tinf 

2*ab*fluxcoeffb*q_bottom; 

%    for the front surface 

elseif ((kk>l) & (kk<surface) & (jj==row) & (ii>l) & (ii<col)) 

TP0=temp((kk-1)*row+jj,ii); 
TE0=temp((kk-1)*row+jj,ii+1); 
TW0=temp((kk-1)*row+jj, ii-1) ; 
TN0=temp((kk-1)*row+jj-1, ii) ; 
TT0=temp((kk-2)*row+jj,ii) ; 
TBO=temp(kk*row+jj,ii) ; 

new(row_num,2)=apO+teta*(ae+aw+an+2*as*coeffs+at+ab); 
new(row_num,3)=-teta*ae; 
new(row_num,l)=-teta*aw; 
north(row_num,l)=teta*an; 
top(row_num,1)=teta*at; 
bottom(row_num,1)=teta*ab; 

right(row_num,l)=(1-teta)*(ae*TEO+aw*TW0+an*TNO+at*TTO+ab*TBO)+ ... 
(apO-(1-teta)*(ae+aw+an+2*as*coeffs+at+ab))*TP0 + 2*as*coeffs*Tinf 

2*as*fluxcoef fs*q_so.uth; 

%    for the back surface 

elseif ((kk>l) & (kk<surface) & (jj==l) & (ii>l) & (ii<col)) 
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TPO=temp((kk-1)*row+jj,ii) ; 
TEO=temp((kk-1)*row+jj, ii + 1) ; 
TWO=temp((kk-1)*row+jj , ii-1); 
TSO=temp((kk-1)*row+jj + 1, ii) ; 
TTO=temp((kk-2)*row+jj,ii) ; 
TBO=temp(kk*row+j j,ii); 

new(row_num,2)=ap0+teta*(ae+aw+2*an*coeffn+as+at+ab); 
new(row_num,3)=-teta*ae; 
new(row_num,1)=-teta*aw; 
south(row_num,1)=teta*as; 
top(row_num,1)=teta*at; 
bottom(row_num,l)=teta*ab; 

right(row_num,l)=(l-teta)*(ae*TE0+aw*TW0+as*TS0+at*TT0+ab*TB0)+ ... 
(apO-(1-teta)*(ae+aw+2*an*coeffn+as+at+ab))*TP0 + 2*an*coeffn*Tinf 

2*an*fluxcoeffn*q_north; 

%    for the left-lateral surface 

elseif ((kk>l) & (kk<surface) & (jj>l) & (jj<row) & (ii==l)) 

TP0=temp((kk-1)*row+jj,ii); 
TE0=temp((kk-1)*row+jj,ii+1); 
TN0=temp((kk-1)*row+jj-1,ii); 
TS0=temp((kk-1)*row+jj+1,ii); 
TT0=temp((kk-2)*row+jj,ii); 
TB0=temp(kk*row+jj,ii); 

new(row_num,2)=apO+teta*(ae+2*aw*coeffw+an+as+at+ab); 
new(row_num,3)=-teta*ae; 
north(row_num,1)=teta*an; 
south(row_num,1)=teta*as; 
top(row_num,1)=teta*at; 
bottom(row_num,1)=teta*ab; 

right(row_num,1)=(1-teta)*(ae*TE0+an*TN0+as*TS0+at*TT0+ab*TB0)+ ... 
(apO-(1-teta)*(ae+2*aw*coeffw+an+as+at+ab))*TP0 + 2*aw*coeffw*Tinf 

2*aw*fluxcoeffw*q_west; 

%    for the right-lateral surface 

elseif ((kk>l) & (kk<surface) & (jj>l) & (jj<row) & (ii==col)) 

TP0=temp((kk-1)*row+jj, ii) ; 
TW0=temp((kk-1)*row+jj , ii-1); 
TN0=temp((kk-1)*row+jj-1,ii) ; 
TS0=temp((kk-1)*row+jj+1,ii); 
TT0=temp((kk-2)*row+jj,ii); 
TB0=temp(kk*row+jj,ii); 
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new(row_num,2)=apO+teta*(2*ae*coeffe+aw+an+as+at+ab); 
new(row_num,1)=-teta*aw; 
north(row_num,l)=teta*an; 
south(row_num,l)=teta*as; 
top(row_num,1)=teta*at; 
bottom(row_num,l)=teta*ab; 

right(row_num,1)=(1-teta)*(aw*TW0+an*TN0+as*TS0+at*TT0+ab*TB0)+ ... 
(apO-(1-teta)*(2*ae*coeffe+aw+an+as+at+ab))*TP0 + 2*ae*coeffe*Tinf 

2*ae*fluxcoeffe*q_east; 

%    for the front-top edge 

elseif ((kk==l) & (jj==row) & (ii>l) & (ii<col)) 

TP0=temp((kk-1)*row+jj,ii); 
TE0=temp((kk-1)*row+jj,ii+1) ; 
TW0=temp((kk-1)*row+jj,ii-1); 
TN0=temp((kk-1)*row+jj-1,ii); 
TBO=temp(kk*row+jj,ii) ; 

new(row_num,2)=apO+teta*(ae+aw+an+2*as*coeffs+2*at*coefft+ab); 
new(row_num,3)=-teta*ae; 
new(row_num,1)=-teta*aw; 
north(row_num,1)=teta*an; 
bottom(row_num, 1)=teta*ab; 

right(row_num,1)=(1-teta)*(ae*TE0+aw*TW0+an*TN0+ab*TB0)+ ... 
(apO-(1-teta)*(ae+aw+an+2*as*coeffs+2*at*coefft+ab))*TP0 + ... 
(2*as*coeffs+2*at*coefft)*Tinf - 2*as*fluxcoeffs*q_south- 

2*at*fluxcoefft*q_top ... 
-2*at*fluxcoefft*q_up{jj,ii); 

radiation(row_num,1)=-2*at*radcoeff; 
q_boiling_coeff(row_num,1)=-2*at*fluxcoefft; 

%    for the front-bottom edge 

elseif ((kk==surface) & (jj==row) & (ii>l) & (ii<col)) 

TP0=temp((kk-1)*row+jj,ii); 
TE0=temp((kk-1)*row+jj , ii+1); 
TW0=temp((kk-1)*row+jj , ii-1); 
TN0=temp((kk-1)*row+jj-1,ii); 
TT0=temp((kk-2)*row+jj , ii); 

new(row_num,2)=ap0+teta*(ae+aw+an+2*as*coeffs+at+2*ab*coeffb) 
new(row_num,3)=-teta*ae; 
new(row_num,1)=-teta*aw; 

north(row_num,l)=teta*an; 
top(row_num,l)=teta*at; 
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right(row_num,l) = (l-teta)*(ae*TEO+aw*TWO+an*TNO+at*TTO)+ . . . 
(apO-(l-teta)*(ae+aw+an+2*as*coeffs+at+2*ab*coeffb))*TPO + 
(2*as*coeffs+2*ab*coeffb)*Tinf - 2*as*fluxcoeffs*q_south- 

2*ab*fluxcoeffb*q_bottom; 

%    for the back-top edge 

elseif ((kk==l) & (jj==l) & (ii>l) & (ii<col)) 

TP0=temp((kk-1)*row+jj,ii); 
TE0=temp((kk-1)*row+jj,ii+1); 
TW0=temp((kk-1)*row+jj,ii-1); 
TS0=temp((kk-1)*row+jj + 1, ii); 
TBO=temp(kk*row+jj,ii); 

new(row_num,2)=ap0+teta*(ae+aw+2*an*coeffn+as+2*at*coefft+ab) ; 
new(row_num,3)=-teta*ae; 
new(row_num,1)=-teta*aw; 
south(row_num, 1)=teta*as; 
bottom(row_num,1)=teta*ab; 

right(row_num, l) = (l-teta)*(ae*TE0+aw*TW0+as*TS0+ab*TB0)+ ... 
(apO-(1-teta)*(ae+aw+2*an*coeffn+as+2*at*coefft+ab))*TP0 + .. 
(2*an*coeffn+2*at*coefft)*Tinf - 2*an*fluxcoeffn+q_north- 

2*at*fluxcoefft*q_top... 
-2*at*fluxcoefft*q_up(jj,ii); 

radiation(row_num,1)=-2*at*radcoeff ; 
q_boiling_coeff(row_num,1)=-2*at*fluxcoefft; 

%    for the back-bottom edge 

elseif ((kk==surface) & (jj==l) & (ii>l) & (ii<col)) 

TP0=temp((kk-1)*row+jj,ii); 
TE0=temp((kk-1)*row+jj,ii+1); 
TW0=temp((kk-1)*row+jj,ii-1); 
TS0=temp((kk-1)*row+jj+1,ii); 
TT0=temp((kk-2)*row+jj,ii); 

new(row_num,2)=apO+teta*(ae+aw+2*an*coeffn+as + at + 2*ab*coeffb) ; 
new(row_num,3)=-teta*ae; 
new(row_num,1)=-teta*aw; 
south(row_num,l)=teta*as; 
top(row_num,l)=teta*at; 

right(row_num,1) = (1-teta)*(ae*TEO+aw*TW0+as*TS0 + at*TTO)+ . . . 
(apO-(1-teta)*(ae+aw+2*an*coeffn+as+at+2*ab*coeffb))*TP0 + .. 
(2*an*coeffn+2*ab*coeffb)*Tinf - 2*an*fluxcoeffn*q_north- 

2*ab*fluxcoeffb*q bottom; 



%    for the front-left edge 

elseif ((kk>l) & (kk<surface) & (jj==row) & (ii==l)) 

TP0=temp((kk-1)*row+jj,ii); 
TE0=temp((kk-1)*row+jj,ii+1); 
TN0=temp((kk-1)*row+jj-l,ii); 
TT0=temp((kk-2)*row+jj,ii); 
TB0=temp(kk*row+j j,ii); 

new(row_num,2)=ap0+teta* (ae+2*aw.*coeffw+an+2*as*coeffs+at+ab) ; 
new(row_num,3)=-teta*ae; 
north(row_num, 1)=teta*an; 
top(row__num,1)=teta*at; 
bottom(row_num,1)=teta*ab; 

right(row_num, l) = (l-teta)*(ae*TE0+an*TN0+at*TT0+ab*TB0)+ ... 
(apO-(1-teta)*(ae+2*aw*coeffw+an+2*as*coeffs+at+ab))*TP0 + .. 
(2*aw*coeffw+2*as*coeffs)*Tinf - 2*aw*fluxcoeffw*q_west- 

2*as*fluxcoeffs*q south; 

%    for the front-right edge 

elseif ((kk>l) & (kk<surface) & (jj==row) & (ii==col)) 

TP0=temp((kk-1)*row+j j,ii); 
TW0=temp((kk-1)*row+jj,ii-1); 
TN0=temp((kk-1)*row+jj-l,ii); 
TT0=temp((kk-2)*row+jj,ii); 
TBO=.temp(kk*row+j j,ii) ; 

new(row_num,2)=ap0+teta*(2*ae*coeffe+aw+an+2*as*coeffs+at+ab); 
new(row_num, l)=-te'ta*aw; 
north(row_num,l)=teta*an; 
top(row_num,l)=teta*at; 
bottom(row_num,l)=teta*ab; 

right(row_num,1)=(1-teta)*(aw*TW0+an*TN0+at*TT0+ab*TB0)+ ... 
(apO-(1-teta)*(2*ae*coeffe+aw+an+2*as*coeffs+at+ab))*TP0 + .. 
(2*ae*coeffe+2*as*coeffs)*Tinf - 2*ae*fluxcoeffe*q_east- 

2*as*fluxcoeffs*q south; 

%    for the back-left edge 

elseif ((kk>l) & (kk<surface) & (jj==l) & (ii==l)) 

TP0=temp((kk-1)*row+jj,ii); 
TE0=temp((kk-1)*row+jj , ii+1) ; 
TS0=temp((kk-1)*row+jj+l,ii); 
TT0=temp((kk-2)*row+jj , ii) ; 
TBO=temp(kk*row+jj,ii); 
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new(row_num,2)=ap0+teta*(ae+2*aw*coeffw+2*an*coeffn+as+at+ab); 
new(row_num,3)=-teta*ae; 
south(row_num,1)=teta*as; 
top(row_num,1)=teta*at; 
bottom(row_num,1)=teta*ab; 

right(row_num,l) = (l-teta)*(ae*TEO+as*TSO + at*TTO+ab*TB0)+ . . . 
(apO-(1-teta)*(ae+2*aw*coeffw+2*an*coeffn+as+at+ab))*TP0 + .. 
(2*aw*coeffw+2*an*coeffn)*Tinf -2*aw*fluxcoeffw*q_west- 

2*an*fluxcoeffn*q_north; 

%    for the back-right edge 

elseif ((kk>l) & (kk<surface) & (jj==D & (ii==col)) 

TP0=temp((kk-1)*row+jj, ii); 
TW0=temp((kk-1)*row+jj, ii-1) ; 
TS0=temp((kk-1)*row+jj+1,ii); 
TT0=temp((kk-2)*row+jj,ii); 
TBO=temp(kk*row+jj, ii); 

new(row_num,2)=apO+teta*(2*ae*coeffe+aw+2*an*coeffn+as+at+ab); 
new(row_num,1)=-teta*aw; 
south(row_num, 1)=teta*as; 
top'(row_num, 1) =teta*at; 
bottom(row_num,1)=teta*ab; 

right(row_num,l) = (l-teta)*(aw*TW0 + as*TS0 + at*TT0 + ab*TB0)+ . . . 
(apO-(1-teta)*(2*ae*coeffe+aw+2*an*coeffn+as+at+ab))*TP0 + .. 
(2*ae*coeffe+2*an*coeffn)*Tinf - 2*ae*fluxcoeffe*q_east- 

2*an*fluxcoeffn*q_north; 

%    for the left-lateral-top edge 

elseif ((kk==l) & (jj>l) & (jj<row) & (ii==l)) 

TP0=temp((kk-1)*row+jj,ii); 
TE0=temp((kk-1)*row+jj,ii+1); 
TN0=temp((kk-1)*row+jj-1,ii); 
TS0=temp((kk-1)*row+jj+1,ii); 
TBO=temp(kk*row+jj,ii); 

new(row_num,2)=apO+teta*(ae+2*aw*coeffw+an+as+2*at*coefft+ab); 
new(row_num,3)=-teta*ae; 
north(row_num,1)=teta*an; 
south(row_num,1)=teta*as; 
bottom(row_num,1)=teta*ab; 

right(row_num,l)=(l-teta)*(ae*TE0+an*TN0+as*TS0+ab*TB0)+ ... 
(apO-(1-teta)*(ae+2*aw*coeffw+an+as+2*at*coefft+ab))*TP0 + ... 
(2*aw*coeffw+2*at*coefft)*Tinf - 2*aw*fluxcoeffw*q_west- 

2*at*fluxcoefft*q_top... 
-2*at*fluxcoefft*q_up(jj,ii); 
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radiation(row_num,1)=-2*at*radcoeff ; 
q boiling_coeff(row_num,l)=-2*at*fluxcoefft; 

%    for the left-lateral-bottom edge 

elseif ((kk==surface) & (jj>l) & (jj<row) & (ii==l)) 

TP0=temp((kk-1)*row+jj,ii); 
TE0=temp((kk-1)*row+jj,ii+1) ; 
TN0=temp((kk-1)*row+jj-1,ii) ; 
TS0=temp((kk-1)*row+jj+1,ii); 
TT0=temp((kk-2)*row+jj,ii); 

new(row_num,2)=ap0+teta* (ae+2*aw*coeffw+an+as+at+2*ab*coeffb); 
new(row_num,3)=-teta*ae; 
north(row_num,l)=teta*an; 
south(row_num,1)=teta*as; 
top(row_num,1)=teta*at; 

right(row_num,1)=(l-teta)*(ae*TE0+an*TN0+as*TS0+at*TT0)+ ... 
(apO-(l-teta)*(ae+2*aw*coeffw+an+as+at+2*ab*coeffb))*TP0 + .. 
(2*aw*coeffw+2*ab*coeffb)*Tinf - 2*aw*fluxcoeffw*q_west- 

2*ab*fluxcoeffb*q_bottom; 

%    for the right-lateral-top edge 

elseif ((kk==l) & (jj>l) & (jj<row) & (ii==col) 

TP0=temp((kk-1)*row+jj,ii); 
TW0=temp((kk-1)*row+jj,ii-1); 
TN0=temp((kk-1)*row+jj-1,ii); 
TS0=temp((kk-1)*row+jj+1,ii); 
TB0=temp(kk*row+j j,ii); 

new(row_num,2)=apO+teta*(2*ae*coeffe+aw+an+as+2*at*coefft+ab); 
new(row_num, l)=-teta*aw; 
north(row_num,l)=teta*an; 
south(row_num,1)=teta*as,• 
bottom(row_num,l)=teta*ab; 

right(row_num,1) = (1-teta)*(aw*TW0+an*TN0+as*TS0+ab*TB0)+ . . . 
(apO-(l-teta)*(2*ae*coeffe+aw+an+as+2*at*coefft+ab))*TP0 + .. 
(2*ae*coeffe+2*at*coefft)*Tinf - 2*ae*fluxcoeffe*q_east- 

2*at*fluxcoefft*q_top... 
-2*at*fluxcoefft*q_up(jj,ii); 

radiation(row_num,1)=-2*at*radcoeff; 
q boiling coeff(row num,l)=-2*at*fluxcoefft; 

%    for the right-lateral-bottom edge 

elseif ((kk==surface) & (jj>l) & (jj<row) & (ii==col) 
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TPO=temp((kk-1)*row+jj,ii); 
TWO=temp((kk-1)*row+jj, ii-1); 
TNO=temp((kk-1)*row+jj-1, ii) ; 
TSO=temp((kk-1)*row+jj + 1, ii) ; 
TTO=temp((kk-2)*row+jj,ii) ; 

new(row_num,2)=apO+teta*(2*ae*coeffe+aw+an+as+at+2*ab*coeffb) 
new(row_num,1)=-teta*aw; 
north(row_num,1)=teta*an; 
south(row_num,1)=teta*as; 
top(row_num,1)=teta*at; 

right(row_num, l) = (l-teta)*(aw*TW0+an*TN0+as*TS0+at*TT0)+ . . . 
(apO-(1-teta)*(2*ae*coeffe+aw+an+as+at+2*ab*coeffb))*TP0 + . 
(2*ae*coeffe+2*ab*coeffb)*Tinf - 2*ae*fluxcoeffe*q_east- 

2*ab*fluxcoeffb*q_bottom; 

%    for the interior nodes 
%% as expected, note that the interior node has all of its neighbors 
%% contributing to the coefft matrices 
else 

TP0=temp((kk-1)*row+jj,ii); 
TE0=temp((kk-1)*row+jj , ii + 1) ; 
TW0=temp((kk-1)*row+jj,ii-1); 
TN0=temp((kk-1)*row+jj-1, ii) ; 
TS0=temp((kk-1)*row+jj+1, ii); 
TT0=temp((kk-2)*row+jj,ii) ; 
TBO=temp(kk*row+jj,ii); 

new(row_num,2)=ap; 
new(row_num,3)=-teta*ae; 
new(row_num,1)=-teta*aw; 
north(row_num,1)=teta*an; 
south(row_num,1)=teta*as; 
top(row_num,1)=teta*at; 
bottom(row_nurn,1)=teta*ab; 

right(row_num,l)=(l-teta)*(ae*TE0+aw*TW0+an*TN0+as*TS0+at*TT0+ab*TB0)+ 

(apO-(1-teta)* (ae+aw+an+as+at+ab))*TP0; 

end % the "end" of if loop to decide where node is located... 

end % the "end" of loop for ii= ...(cols) 

end % the "end" of loop for jj= .. . (rows) 

end % the "end" of loop for kk= ...(surfaces) 

toe   % end of tic-toe loop 
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%% solve the matrix and find the new temperatures by using the 
"aasolvelO.m" 
%% function - row-by-row sweeping iterations from surface to surface 

[temp]=aasolvelO(row,col,surface,new,right,north,south,top,bottom, 

temp,radiation,q_boiling_coeff,Tinf,x_intl,y_intl,x,y); 

% print the maximum temp in the entire 3-d grid 
max(max(temp)) 

%%  save the row number, column_number, surface number, time and 
temperature 
%%  in every iteration 

save_me % print value of save_me counter 

% time_step_interval is the freq at which to save temp data 
time_step_interval=l; 

if (save_me/time_step_interval) == fix(save_me/time_step_interval) 

%% save_counter is used in "save_thelO.m" function to apend to file- 
name 
%% in which temp data is being saved 

save_counter=save_counter+l; 

% save_thelO saves top-surface temp at each time-step into a diff file 
name 

save_thelO(row,col,surface,time,temp(l:row,l:col),save_counter,b,x, y) ; 

%% save_alllO saves all 3-d temp data at each time-step by overwriting 
onto 
%% the same file name - imp for restarting the iterations... 

save_alllO(number,time,temp,b,delta_t,back,front,width,thickness,save_c 
ounter,save_me); 

end 

num_milli_secs=500; % freq at which to save all 3-d temp data 
for aa=l:20 

if (round(save_me)==round(num_milli_secs*aa)) 
save_thelO(row,col,surface,time,temp,save_counter,b,x,y); 

end 

end 

end 

93 



%    THE FUNCTION PROGRAM (aasolve 10.m) 

% this program solves the matrix produced by the main program 
% by using iterative sweeping method. 
% 

function [temp] = aasolvelO(row,col,surface,new,right,north,south,top, 

bottom,temp,radiation,q_boiling_coeff,Tinf,x_intl,y_intl,x,y); 

% for a a*b*c  three dimensional matrix, 
% 
% size of new  > (a*b*c)*3  TP, TE, TW coefficients for the 
% whole grids 
% size of top  > (a*b*c)*l  TT coefficients for the whole grids 
% size of bottom —> (a*b*c)*l  TB coefficients for the whole  grids 
% size of north  > (a*b*c)*l  TN coefficients for the whole grids 
% size of south  > (a*b*c)*l  TS coefficients for the whole grids 
% size of right  > (a*b*c)*l  The values of the righthandside of 
% the matrix 
% size of temp. > (a*b)*c  The temperatures of the grids 
% size of radiation —> (a*b)*l  The radiation coefficients 
% size of q_boiling_coeff —> (a*b)*l   The boiling and free 
% convection heat fluxes from the top surface 

% initialize the temp_old,  temp_old is the old temperatures of the 
% grid points. It is used to compare the temperatures before and after 
% the iterations. If the difference is less than  0.1, the iteration 
% is enough. 

temp_old=temp+100*ones(size(temp)); 

it_num=0; 
temp_saturation=100; 

delta_iteration=0.1; 
count_iteration=0; 

while max(max(abs(temp_old-temp))) > delta_iteration 

count_iteration = count_iteration+l; 

if count_iteration>delta_iteration*50+5 

delta_iteration=delta_iteration+0.1 

end 

max(max(abs(temp_old-temp))) 

it_num=it_num+l % iteration number 

94 



disp(max(max(temp)) 
temp_old=temp; 

The variables of the boiling regimes 

g=9.81; 
csf=0.0132; 
ne=l; 
hfg=2257E3; 
ro_l=957.85; 
ro_v=0.6; 
surface_tension=58.9E-3; 
Prandtl=1.75; 
miw_l=2.775E-4; 
miw_v=12.02E-6; 
cpl=4211; 
cpv=2029; 
epsi_s=0.82; 
k_liq=0.682; 
k_vap=0.024 9; 
alpha_l=0.169E-6; 
T_sat=100; 
T_liquid=27; 
sigma s=5.67E-8; 

pisi_pisi=zeros(row,col); 

%  start the iterations 

for cz=l:surface    %   for the surfaces 

for cy=l:row       %  for the rows 

indexl=(cz-1)*row*col+(cy-1)*col+l; 
index2=(cz-1)*row*col+cy*col; 

newl=new(indexl:index2,:); 
topl=top(indexl:index2,1); 
bottoml=bottom(indexl:index2,1); 
northl=north(indexl:index2,1) 
southl=south(indexl:index2,1) 
rightl=right(indexl:index2,1) 
radiationl=zeros(length(indexl:index2),1); 
q_boiling_free=zeros(length(indexl:index2) , 1); 

for cx=l:col       %   for the columns 
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%   multiply the coefficients by the temperatures 

if cz==l 

qqqq=0;    %  heat flux to the outside because of boiling or free 
convection 

% The radiation heat flux from the top surface 

radiationl(1:col,1)=radiation(((cy- 
1)*col+l) : (cy*col),1).*(temp(cy,cx)A4) ; 
radiationl(ex,1)=radiation((cy-1)*col+cx,1)*(temp(cy,ex)A4) ; 

% The boiling or free convection heat flux from the top surface 

delta_temp = temp(cy,ex) - temp_saturation; 

if (delta_temp<=5) 

%  Rayleigh number 

T_film=(temp(cy,cx)+Tinf)/2+273.15; 
g=9.81; 
beta=-0.000000017 937*(T_filmA2)+0.0000188*T_film-0.0037515; 
alpha=-1.875E-12*(T_filmA2)+1.5525E-9*T_film-1.4995E-7; 
nu=l.125E-10*(T_filmA2)-8.285E-8*T_film+1.5584E-5; 
kconduc=-0.000008125*(T_filmA2)+0.00637 7 5*T_film-0.568 95; 

% characteristic length L 
% The free convection coefficient will be found for a 1*1 m2 area 

L=l/4; 

Ra=abs(g*beta*(temp(cy,ex)-Tinf)*(LA3)/(nu*alpha)); 

if Ra<16 

Nusselt=l; 

else 

if (Ra<=lE7) 
Nusselt=0.54*(realpow(Ra,0.25)); 

else 
Nusselt=0.15*(realpow(Ra,(1/3))); 

end 

end 

h_boiling=Nusselt*kconduc/L; 
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q_boiling_free(cx,1)=q_boiling_coeff((cy-1)*col+cx, 1)*. . 
h_boiling*(temp(cy,ex)-Tinf); 

qqqq=h_boiling*(temp(cy,ex)-Tinf); 

end 

if (delta_temp>5 & delta_temp<=30) 

q_prime_s=miw_l*hfg*sqrt(g*(ro_l-ro_v)/surface_tension)* . . 
(cpl*delta_temp/csf/hfg/PrandtlAne)A3; 

tau=pi/3*sqrt(2*pi)*sqrt(surface_tension/g/(ro_l-ro_v))*. . 
(realpow(abs(ro_vA2/surface_tension/g/(ro_l- 

ro_v)),0.25)); 

q_boiling_free(ex, 1)=q_boiling_coeff((cy- 
1)*col+cx,1)*q_prime_s*... 

(l+(2*k_liq*(T_sat-T_liquid)/... 
sqrt(pi*alpha_l*tau))*24/(pi*hfg*ro_v)*. . . 
realpow(abs(ro_vA2/surface_tension/g/(ro_l- 

ro_v)),.25)); 

qqqq=q_prime_s*... 
(l+(2*k_liq*(T_sat-T_liquid)/... 
sqrt(pi*alpha_l*tau))*24/(pi*hfg*ro_v)*... 
realpow(abs(ro_vA2/surface_tension/g/(ro_l- 

ro v)),.25)); 

end 

if (delta_temp>30 & delta_temp<=120) 

q_max=0.14 9*hfg*ro_v*realpow(abs(surface_tension*g*(ro_l- 
ro_v)/ro_vA2),0.25); 

q_min=0.09*ro_v*hfg*realpow(abs(surface_tension*g*(ro_l-ro_v)/. . . 
(ro_l+ro_v)A2),0.25); 

1 
log_q=logl0(q_max/q_min)/loglO(30/120)*loglO(delta_temp/120)+logl0(q_mi 
n); 
q_boiling_free(ex,1)=q_boiling_coeff((cy-1)*col+cx, 1)*10A(log_q) ; 
qqqq=10A(log_q); 
end 

if (delta_temp>120) 
lambda=2*pi*realpow(abs(surface_tension/g/(rd 1-ro v)),0.5); 
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h_conduct=0.59*realpow(abs(g*(ro_lro_v)*ro_v*k vapA3*. . 
(hfg+0.68*cpv*delta_temp)/(lambda*miw_v*delta_temp)),.25); 

h_radiate=sigma_s*epsi_s*(((temp(cy, ex))A4-(T_sat) "4)/. . . 
(temp(cy,ex)-T_sat)); 

h_boiling=h_conduct+0.75*h_radiate; 

q_boiling_free(cx,1)=q_boiling_coeff((cy-1)*col+cx, 1)* . . 
h_boiling*(temp(cy, ex)-Tinf); 

qqqq=h_boiling*(temp(cy,ex)-Tinf); 
end 

pisi_pisi(cy,cx)=qqqq; 
end 

if cz>l 
topi(ex,l)=topl(ex,1)*temp((cz-2)*row+cy,cx); 

end 

if cz<surface 
bottoml(ex,1)=bottoml(ex,1)*temp(cz*row+cy,ex); 

end 

if cy>l 
northl(ex,l)=northl(ex,1)*temp((cz-1)*row+cy-l,ex); 

end 

if cy<row 
southl(ex,l)=southl(ex,1)*temp((cz-1)*row+cy+l,ex); 

end 

end 

%  indexl...index2  shows the rows in the new matrix that the 
%  calculations are done 

if cz==l 

right1(l:col,l)=rightl(l:col,1)+radiationl(l:col,1)+q_boiling_free(l:co 
1,1); 

end 

right1(1:col,1)=rightl(1:col,1)+northl(1:col,1) ... 
+southl(l:col,l)+topl(l:col,l)+bottoml(l:col,l); 
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%   solve the diagonal matrix by using Gauss elimination method 

for i=l:col-l; 
newl(i,3)=newl(i,3)/newl(i,2); 
right1(i,1)=rightl(i,1)/newl(i,2); 
newl(i,2)=1; 

newl(i+l,2)=newl(i+l,2)-newl(i+l,l)*newl(i,3); 
rightl(i+1,1)=rightl(i+1,1)-rightl(i,1)*newl(i+1,1); 
newl(i+1,1)=0; 

end 

rightl(col,1)=rightl(col,1)/newl(col,2); 
newl(col,2)=1; 

for i=col:-l:2 
rightl(i-1,l)=rightl(i-1,1)-rightl(i,1)*newl(i-l,3); 
newl(i-l,3)=0; 

end 

%  The calculation is over, update the temperature matrix for the new 
values 

temp((cz-1)*row+cy,:)=rightl(l:col, :) ' ; 

end 

end 

end 

% figure 
% mesh(x,y,pisi_pisi); 
% pisi_pisi 

% title('heat') 
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%    THE FUNCTION PROGRAM (oldjemp 10.m) 

%% The function program (old_templO.m) finds out the new positions of 
%% the moving grid points at the new time step and the old temperature 
%% values of the new grid points by using second degree polynomial 
%% enterpolation. 

function [temp]=old_templO(row,col,surface,temp,x,y,deltax,deltay); 

%% This (for) loop finds out the x-coordinates of the new area where 
%% the grid points move after the time delta_t. 

for forl=l:col 

new pos x(l,forl)=x(1,forl)+deltax; 

count = 1; 

while ((x(l,count) < new_pos_x(1,forl)) & (count<col+10)) 

if count==col 
count=col+20;     %  There was "break" command here before, 

end 

count=count+l; 
end 

if count>=col+20 
count=col; 

end 

if (deltax>0) 

if count>2 
the right 

count = count-2; 
else 

if count > 1 
count =count-l; 

end 
end 

end 

% deltax>0 means if the source goes to 

if (deltax<=0) 
the right 

% deltax>0  means if the source goes to 

if count==col 
count=count-2 ; 
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else 
if count>l 
count =count-l; 

end 
end 

end 

pos x(forl) = count; 

end 

%% This (for) loop finds out the y-coordinates of the new area where 
%% the grid points move after the time delta t. 

for1=0; 

for forl=l:l:row 

new_pos_y(forl)=y(1,forl)+deltay; 

count = 1; 

while ((y(l,count) > new_pos_y(1,forl)) & (count<row+10)) 

if count==row 
count=row+20; 

end 

count=count+l; 
end 

if count>=row+20 
count=row; 

end 

if (deltay>0) 

if count==row 
count=count-2; 

else 
if count>l 

count = count-1; 
end 

end 
end 

if (deltay<=0) 

% deltax>0 means if the source goes to 
% the right 

% deltax>0 means if the source goes to the 
% right 
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if count>2 
count=count-2; 

else 
if count==2 
count =count-l; 
end 

end 

end 

po's_y(forl) = count; 

end 

%% Now, we know the coordinates of the area where the grid points 
%% move.We have to use second degree polynomial interpolation to find 
%% the temperature values of the new grid points. Here, we use the 
%% temperature values from the previous time step. 

for forl=l:surface 

for for2=l:row 

for for3=l:col 

% temperatures 
yO=temp((forl-1)*row+pos_y(for2) ,for3) ; 
yl=temp((forl-1)*row+pos_y(for2)+1,for3) ; 
y2=temp((forl-1)*row+pos_y(for2)+2, for3) ; 

% positions 
xO=y(pos_y(for2)); 
xl=y(pos_y(for2)+1); 
x2=y(pos_y(for2)+2); 

%  our second degree polynomial is y=a*xA2+b*x+c 
% a, b, c are the coefficients. Now find these coefficients. 

b=(yO* (x2A2-xlA2)+yl* (xO/s2-x2A2)+y2* (xlA2-xOA2) ) / . . . 
(x0*(x2A2-xlA2)+xl*(x0A2-x2A2)+x2*(xlA2-xOA2)) ; 

if abs(xO)~=abs(x2) 
a=(y0-y2+b*(x2-x0))/(xOA2-x2A2); 

else 
a=(yO-yl+b*(xl-xO))/(xOA2-xlA2); 

end 

c=yO-a*xOA2-b*xO; 

temp_old((forl- 
D*row+for2,for3)=a*new_pos_y(for2)A2+b*new_pos_y(for2)+c; 
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%    [pol_coeff]=polyfit(y(pos_y(for2):(pos_y(for2)+2)), 
% temp((((forl-1)*row+pos_y(for2)):((forl- 
l)*row+pos_y(for2)+2)),for3)',2); 
%   temp_old((forl- 
1)*row+for2,for3)=polyval(pol_coeff,new_pos_y(for2)); 

end 
end 

end 

for for1=1:surface 

for for2=l:row 

for for3=l:col 

yO=temp_old((forl-1)*row+for2,pos_x(for3)) ; 
yl=temp_old((forl-1)*row+for2,pos_x(for3)+1) ; 
y2=temp_old((forl-1)*row+for2,pos_x(for3)+2) ; 

xO=x(pos_x(for3)); 
xl=x(pos_x(for3)+1); 
x2=x(pos_x(for3)+2) ; 

b=(y0*(x2A2-xlA2)+yl*(xCT2-x2A2)+y2*(xlA2-xCr2))/ ... 
(xO*(x2A2-xlA2)+xl*(xOA2-x2A2)+x2*(xlA2-xOA2)) ; 

if abs(x0)~=abs(x2) 
a=(y0-y2+b*(x2-x0))/(xOA2-x2A2) ; 

else 
a=(yO-yl+b*(xl-xO))/(xOA2-xlA2); 

end 

c=yO-a*xOA2-b*xO; 

temp((forl- 
1)*row+for2,for3)=a*new_pos_x(for3)A2+b*new_pos_x(for3)+c; 

%   [pol_coeff]=polyfit(x(pos_x(for3):(pos_x(for3)+2)), ... 
% temp_old((forl- 
1)*row+for2,((pos_x(for3)):(pos_x(for3)+2))),2); 
%   temp((forl-1)*row+for2,for3)=polyval(pol_coeff,new_pos_x(for3)); 

end 
end 

end 
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% THE FUNCTION PROGRAM (save_alllO.m) 
% 
1% the function program (save_alll0.m) saves all 3-d temp data at each 
%% time-step by overwriting onto 

function 
[]=save_alllO(number,time,temp, b, delta_t,back, front,width,thickness,sav 
e_counter,save_me); 

save save alllO 
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% THE FUNCTION PROGRAM (save_thelO.m) 
Q. 
O 

% the function program (save_thelO) saves top-surface temp at each 
% time-step into a diff file name 
%% (aathlO.m) and (aathlOgoon.m) can not be compiled without putting 
%% "%" symbol in front of save....,after compiling erase "%" symbol and 
%% save the program again. 

function []=save_thelO(row,col,surface,time,temp, save_counter,b,x,y); 

save (['temperaturelO_',num2str(save counter)]); 
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